Perbandingan Hasil Uji Normalitas dan Homogenitas Data Pretest dan Posttest Siswa dengan Menggunakan Software SPSS dan Microsoft Excel

Aysha Alia Iskandar¹, Rona Ully², Indra Misbah³, Muhammad Nursalman⁴ ^{1,2,3,4} Pendidikan Ilmu Komputer, Universitas Pendidikan Indonesia e-mail: ayshaaliaisk22@upi.edu¹, ronaullyfpmipa23@upi.edu², indramisbah@upi.edu³

Abstrak

Artikel ini menjelaskan cara menggunakan software SPSS dan Microsoft Excel untuk membandingkan hasil uji normalitas dan homogenitas data siswa sebelum dan sesudah pengujian. 72 siswa berpartisipasi dalam penelitian ini dibagi menjadi dua kelompok yaitu kelas eksperimen dan kelas kontrol. Uji normalitas digunakan untuk mengetahui apakah data berdistribusi normal, dan uji homogenitas digunakan untuk memeriksa apakah variansi antar kelompok siswa sama. Hasil analisis menunjukkan bahwa data pre-test dan post-test memenuhi asumsi normalitas dan homogenitas, serta nilai signifikansi kedua software menunjukkan konsistensi dalam analisis statistik. Hasil ini menyoroti efektivitas penggunaan SPSS dan Excel untuk menganalisis data pendidikan dan pentingnya memilih perangkat lunak yang tepat untuk mendukung penelitian pendidikan yang berkualitas.

Kata kunci: Uji Normalitas, Uji Homogenitas, SPSS, Microsoft Excel, Analisis Data Pendidikan

Abstract

This article describes how to use SPSS and Microsoft Excel software to compare the results of the normality and homogeneity test of student data before and after the test. The 72 students participating in this study were divided into two groups, namely the experimental class and the control class. The normality test was used to find out whether the data was normally distributed, and the homogeneity test was used to check whether the variance between groups of students was the same. The results of the analysis showed that the pre-test and post-test data met the assumptions of normality and homogeneity, and the significance values of the two software showed consistency in statistical analysis. These results highlight the effectiveness of using SPSS and Excel to analyze education data and the importance of choosing the right software to support quality educational research.

Keywords : Normality Test, Homogeneity Test, SPSS, Microsoft Excel, Educational Data Analysis

PENDAHULUAN

Pendidikan merupakan landasan penting untuk mengembangkan sumber daya manusia yang unggul (Dewi & Supriyadi, 2020). Dalam kehidupan berbangsa dan bernegara, pendidikan sangat diperlukan untuk meningkatkan sumber daya manusia (SDM) negara. Karena semakin baik SDM suatu negara maka semakin maju pula negara tersebut (Hidayati & Setiawan, 2021). Pendidikan tidak hanya memberikan pengetahuan, tetapi juga membantu mengembangkan karakter dan kepribadian individu sehingga dapat memberikan kontribusi positif kepada masyarakat (Marisa & Fitriani, 2021). Oleh karena itu, penting bagi lembaga pendidikan untuk memperkenalkan metode pengajaran yang efektif dan inovatif untuk mencapai tujuan pendidikan yang diharapkan (Mulyasa & Suparno, 2020).

Salah satu aspek yang sangat mempengaruhi mutu pendidikan adalah proses belajar mengajar yang berlangsung di dalam kelas (Nugroho & Wulandari, 2020). Proses ini melibatkan dialog antara pendidik dan siswa, dengan pendidik bertindak sebagai fasilitator untuk membantu siswa memahami materi pelajaran (Rosari & Patras, 2023). Penelitian menunjukkan bahwa metode pengajaran yang berbeda secara signifikan meningkatkan keterlibatan siswa dan hasil

belajar (Suparno & Kuncoro, 2020). Oleh karena itu, guru dituntut untuk terus mengembangkan keterampilannya agar dapat menggunakan pendekatan pengajaran yang berbeda-beda tergantung kebutuhan siswanya (Susetiyo & Fitriani, 2020).

Dalam rangka penilaian hasil belajar, penting untuk menguji normalitas dan homogenitas data agar analisis statistik dapat dilakukan dengan baik (Zulkarnain & Arifin, 2022). Uji normalitas bertujuan untuk mengetahui apakah data hasil belajar siswa berdistribusi normal dan uji homogenitas bertujuan untuk menguji persamaan varians antar kelompok siswa (Achmad et al., 2022). Kedua tes ini sangat penting dalam penelitian pendidikan, terutama ketika membandingkan efektivitas metode pengajaran yang berbeda (Hidayati & Setiawan, 2021). Untuk menganalisis data secara akurat, penggunaan perangkat lunak statistik seperti SPSS dan Microsoft Excel sangat penting (Dewi & Supriyadi, 2020).

Pendidikan modern juga menghadapi tantangan baru, seperti pesatnya perkembangan teknologi informasi (Marisa & Fitriani, 2021). Penggunaan teknologi dalam proses pembelajaran memungkinkan guru menyajikan materi dengan cara yang lebih menarik dan interaktif (Nugroho & Wulandari, 2020). Selain itu, teknologi juga memudahkan pengumpulan dan analisis data tentang hasil belajar siswa, sehingga guru dapat lebih cepat mengevaluasi dan meningkatkan metode pengajaran yang digunakan (Rosari & Patras, 2023). Oleh karena itu, penggunaan perangkat lunak analisis data dalam penelitian pendidikan menjadi semakin penting untuk meningkatkan kualitas pendidikan di Indonesia (Suparno & Kuncoro, 2020).

Penelitian ini bertujuan untuk membandingkan hasil uji normalitas dan homogenitas data pre-test dan post-test siswa dengan menggunakan SPSS dan Microsoft Excel. Tujuan dari analisis ini adalah untuk memberikan gambaran yang jelas mengenai efektivitas kedua program perangkat lunak tersebut dalam mendukung penelitian pendidikan. Hasil penelitian ini bertujuan untuk memberikan kontribusi terhadap pengembangan metode evaluasi di bidang pendidikan dan meningkatkan kualitas proses belajar mengajar di sekolah-sekolah Indonesia.

METODE

Penelitian menggunakan desain pretest-posttest control group, di mana 72 siswa dibagi menjadi dua kelompok: kelas eksperimen dan kelas kontrol. Setiap kelompok menjalani pretest sebelum perlakuan dan posttest setelah perlakuan. Perlakuan yang diberikan pada kelas eksperimen dapat berupa metode pengajaran baru atau intervensi tertentu, sedangkan kelas kontrol menggunakan metode pengajaran konvensional.

Data yang dikumpulkan berupa hasil pretest dan posttest dianalisis untuk menguji normalitas dan homogenitas. Analisis dilakukan menggunakan perangkat lunak SPSS dan Microsoft Excel untuk membandingkan hasil yang diperoleh dari kedua perangkat lunak. Perbandingan melibatkan pengujian nilai signifikansi (p-value), konsistensi hasil, dan efisiensi penggunaan perangkat lunak.

Tahap penelitian dapat dirinci sebagai berikut:

1. Pengumpulan Data

Pretest dan posttest dilakukan untuk kedua kelompok menggunakan instrumen yang telah divalidasi ahli. Data hasil tes siswa dikumpulkan dan diinput ke perangkat lunak SPSS dan Excel.

2. Uji Normalitas

Dilakukan untuk mengetahui apakah data berdistribusi normal, menggunakan Kolmogorov-Smirnov dan Shapiro-Wilk di SPSS, serta transformasi data atau analisis manual di Excel.

3. Uji Homogenitas

Dilakukan untuk mengetahui apakah variansi antar kelompok siswa sama, menggunakan uji Levene di SPSS dan analisis variansi (ANOVA) di Excel.

4. Perbandingan Hasil

Data dari kedua perangkat lunak dibandingkan berdasarkan tingkat signifikansi, keakuratan hasil, dan kemudahan analisis untuk mengevaluasi efektivitas penggunaan masing-masing perangkat lunak dalam analisis data pendidikan.

Metode ini mendukung tujuan penelitian, yaitu membandingkan hasil analisis statistik menggunakan dua perangkat lunak untuk meningkatkan pemahaman dalam pemilihan alat analisis yang sesuai untuk penelitian pendidikan.

HASIL DAN PEMBAHASAN

Berikut adalah data pre-test dan post-test dari kelas kontrol dan kelas eksperimen yang kami dapatkan.

1. Uji Normalitas

a. Uji Normalitas dengan Menggunakan Excel

 Persiapkan Data. Masukkan data nilai pretest dan posttest untuk kelas kontrol dan kelas eksperimen dalam lembar kerja Excel. Pastikan data sudah diurutkan dari yang terkecil ke terbesar.

_																							
•	AdeSave 💽	۳ ۵			mogenitas																• •		
File	Home		aga Layo	ut Formu	las Dat		eview .	Viaw H	ilp.													ents 🖻 S	hare ~
Rest.	L Cut D Copy ≪ Forma							= E \$ 5 3 5	>- 8 I ⊡ 8	Wrap Text Merge & C			Core form	itional For atting 1 Ta	nat as Cell ble * Styles) 🗮	Delete P	ormat C	∑ AutoSum ∎ Fill × ∲ Clear ×	°Z∀ Sort& Filter*	Pind & Select *		
	Clipboard								Alignment					Style						Editing			
HB																							
⊿ A		D				. 1	н	1			м	N											
1 No	NA																						
No 2 1 3 2 3 4 3 2 4 3 2 4 3 2 5 4 4 6 5 7 6 5 7 6 8 7 7 8 10 9 8 7 11 10 12 11 13 12 14 13 16 14 13 14 16 14 17 16	NA 70 71 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75							1															
18 17 19 18 20 19	75 75 75																						
21 20 22 21 23 22	75 75 76																						
24 23 25 24 26 25 27 26	77 77 78 78																						

2) Hitung Rata-rata nilai dengan fungsi excel =AVERAGE(number1, [number 2], ..) number 1 adalah range data nilai siswa, Mencari nilai varians dengan menggunakan fungsi excel =VAR(number1, [number 2], ..) number 1 adalah range data nilai siswa, dan mencari Simpangan baku dengan menggunakan fungsi excel =STDEV (number1, [number 2], ..) number 1 adalah range data nilai siswa.

all AutoSav	. 💷 🖪	୭-୯	∵ ∓ Ho	mogenitas ~			م	Search								Δ 🙆	- 0	×
File Ho	me Insert	Page Layou	ut Formul		Review												ments 👩 S	ihare -
Paste of	Cut Copy ~ Format Painter seard 1					= = ∻ - = = = = #	Wrap 1	iest & Center 🗸 r	- i 9 18 48 mber 1	Condition Formatting	ail Formatas y* Table* St Styles	Cull yes *	Delete Format	∑ Auto III Fill • ♦ Clea	Sum * 25 Sort r* Riter	7 År Find Å ** Select *	Add-ins	
			RT(878)															
4		B																
8	55	81																
9	56	81																
50	57	82																
51	58	82					_											_
32	59	82					_											_
55	60	82					_											_
14	61	82					_											_
10	62	83					-											_
	64	85					-											_
8	65	86					-											_
59	66	86					_											
70	67	88																
71	68	90																
12	69	90																
73	70	90																
74	71	90					_											_
15	72	95																-1
6 Iotal		5724																-1
Rata-rat	a	79.5																- 1
G Varian	an Baku	4 697412																-1
mpang	prinovatu	4.00/412																-1
31																		- 1
32																		
	m Haman	- la	No.	annalitas I	(herea)					_							_	
	Homogi	mus S	HOLD IN	annani tab	Sinter2										-		_	

3) Hitung Nilai Z, Nilai Z di hitung menggunakan fungsi Excel yaitu =(data ke-1- nilai rata-rata) / Simpangan baku, Enter. kemudian tarik ke bawah hingga data terakhir.

4) Menghitung Probabilitas Kumulatif F(z): Untuk setiap nilai Z, hitung probabilitas kumulatif F(z) dengan fungsi Excel NORMDIST(Z), dimana (Z) adalah nilai Z data ke 1. kemudian tarik ke bawah hingga data terakhir. Hasilnya adalah probabilitas distribusi normal standar.

•	utosana		聞 り	• ? -	⊽ Homo	genitas >	~				,P si	sarch										4		- 0	• ×
File	Hor	ne Inse	et Page	Layout	Formulas	Data	Revi	ew Vi	ew Hel														Com	nents 🚦	🕄 Share 👻
Paste	j X ⊂ Da ⊂ ≪ F	Dut Dopy v Format Pair				- A'		= =	: - *	- E	🔅 Wrap Text 🔝 Merge & C	enter ~	ral • % •		Condition Formatting	al Format - Table -	as Cell Styles	insert U	Delete Fo	rmat *	∑ AutoSun Fill *	Sort I Filter	k Find & * Select *	Add-ins	
US			$\sim Jx$																						
4	В	с	D	E	F		G	н	1)	K	L	M	N	0	P	Q	R	\$	T	U	V	W	X
	A	2 0267	P(2)																						- 6
5	1	-1.8134	0.02155																						_
6	4	-1.1734	0.12033																						_
7	4	-1.1734	0.12033																						_
8 3	5	-0.96	0.16852																						-
9 1	5	-0.96	0.16852																						
10 7	5	-0.96	0.16852																						
11 1	5	-0.96	0.16852																						
12 1	5	-0.96	0.16852																						
13	5	-0.96	0.16852																						
14	5	-0.96	0.16852																						
15	5	-0.96	0.16852																						
16	S	-0.96	0.16852																						_
	5	-0.96	0.16852																						_
18	5	-0.96	0.16852																						_
	2	-0.96	0.16852																						_
21	5	-0.96	0.16852																						
22	S I	-0.96	0.16852																						
23	s	-0.96	0.16852																						
24	5	-0.96	0.16852																						
25	6	-0.7467	0.22763																						
26	7	-0.5333	0.2969																						
27 1	7	-0.5333	0.2969																						
28 1	8	-0.32	0.37448																						
29	8	-0.32	0.37448																						
30	8	-0.32	0.37448																						_
31 3	8	-0.32	0.37448																						
32	8	-0.32	0.37448		_		_		_	_		_							_	_		_			
<		* Hor	nogenitas	Shee	t1 Norr	nalitas	She	et2								•						-			•

5) Menghitung Frekuensi Kumulatif Empiris S(z): Frekuensi kumulatif empiris S(z) dihitung dengan menentukan proporsi data yang lebih kecil dari atau sama dengan nilai tertentu. Gunakan fungsi Excel =IF(data ke-1 = data ke-2, klik kolom S(z) yang kedua, data ke 2 / banyak nya data), enter. kemudian tarik nilai S(z) data ke-1 hingga data ke-72.

6) Menghitung Selisi |F(z) - S(z)|, Kurangi nilai S(z) dari F(z) untuk setiap data, lalu ambil nilai absolutnya. Gunakan rumus =ABS(Fz-Sz).

- 7) Menentukan Nilai Maksimum |F(z) S(z)|, Identifikasi nilai maksimum dari kolom |F(z)-S(z)| menggunakan fungsi MAX(range).
- 8) Membandingkan dengan nilai Kritis, Nilai maksimum |F(z)-S(z)| bandingkan dengan nilai kritis Lilliefors sesuai jumlah data (n) dan tingkat signifikansi (α). Tabel nilai kritis dapat diperoleh dari referensi atau literatur statistik.
- 9) Kesimpulan Jika nilai maksimum |F(z)-S(z)| lebih kecil dari nilai kritis, data berdistribusi normal. Sebaliknya, jika lebih besar, data tidak berdistribusi normal.
- 10) Langkah ini dilakukan untuk setiap kelompok data (pretest dan posttest dari kelas kontrol dan eksperimen). Pastikan semua perhitungan dilakukan secara terpisah untuk menjaga konsistensi. sehingga mendapatkan hasil analisis yang dapat dilihat pada gambar dibawah:

Total	5724	Total	3788
Rata-rata	79.5	Rata-rata	88.093023
Varian	21.9718	Varian	10.753045
Simpangan Baku	4.68741	Simpangan Baku	3.2791836
Nilai Maksimal	0.06477	Nilai Maksimal	0.02057
Liliefors Hitung	0.06477	Liliefors Hitung	0.02057
Liliefors Tabel	0.10442	Liliefors Tabel	0.104419

Berdasarkan hasil analisis uji normalitas menggunakan metode Liliefors, data pretest kelas kontrol dan eksperimen memiliki rata-rata sebesar 79,5 dengan varians 21,9718 dan simpangan baku 4,68741. Nilai Liliefors Hitung sebesar 0,06477 lebih kecil dibandingkan dengan nilai Liliefors Tabel sebesar 0,10442. Hal ini menunjukkan bahwa data pretest berdistribusi normal. Sementara itu, data posttest kelas kontrol dan eksperimen memiliki rata-rata sebesar 85,138889 dengan varians 23,698748 dan simpangan baku 4,868136. Nilai Liliefors Hitung sebesar 0,02057 juga lebih kecil dibandingkan dengan nilai Liliefors Tabel sebesar 0,104419, sehingga data posttest juga berdistribusi normal. Dengan demikian, baik data pretest maupun posttest dari kelas kontrol dan eksperimen memenuhi asumsi normalitas. Analisis statistik lebih lanjut, seperti uji hipotesis, dapat dilakukan karena asumsi dasar distribusi normal telah terpenuhi.

b. Uji Normalitas dengan Menggunakan SPSS

Berikut adalah tahapan untuk melakukan uji normalitas dengan menggunakan software SPSS pada data pretest dan posttest dengan kelas kontrol dan kelas eksperimen. 11) Copy paste data nilai ke halaman "Data View" pada SPSS

🖹 🗄	🖨 🔳		a 🏋	!	e h		 	6									
1: VAR00001	86.	00							_							Visible: 4 of 4	4 Variable
	VAR0000 1	VAR0000 2	VAR0000 3	VAR0000 4	var	var	var	var	var	var	var	var	var	var	var	var	v
1	86.00	82.00	74.00	97.00													1
2	79.00	94.00	90.00	82.00													
3	80.00	72.00	75.00	87.00													
4	80.00	92.00	80.00	92.00													
5	81.00	86.00	82.00	89.00													
6	82.00	84.00	75.00	93.00													
7	78.00	85.00	86.00	85.00													
8	82.00	87.00	85.00	90.00													
9	74.00	80.00	80.00	86.00													
10	77.00	79.00	70.00	82.00													
11	78.00	82.00	85.00	87.00													
12	80.00	85.00	75.00	85.00													
13	80.00	78.00	90.00	87.00													
14	80.00	78.00	75.00	87.00													
15	88.00	80.00	80.00	86.00													
16	81.00	81.00	75.00	93.00													
17	75.00	85.00	80.00	82.00													
18	80.00	82.00	76.00	82.00													
19	79.00	87.00	80.00	87.00													
20	90.00	86.00	78.00	95.00													
21	71.00	83.00	80.00	80.00													
22	83.00	89.00	95.00	92.00													7
	4	_	_			_				_							•
Data View	Variable View																
												1011 0000 01					

12) Pada halaman "Variabel View", sesuaikan nama dan label variabel data

Eile Edit	View Data Transf	form <u>A</u> nalyze	Graphs	Utilities	Extensions Window	Help							
🖹 H	🖨 🛄 🖝	` ~ 1 🖡	1 📥 :		AA 🔤		•						
-	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role		
1	PreTestKontrol	Numeric	8	0	Pre-Test Kontrol	None	None	7	I Right	Scale 8	> Input		
2	PostTestKontrol	Numeric	8	0	Post-Test Kontrol	None	None	8	I Right	🖋 Scale	> Input		
3	PreTestEksperimen	Numeric	8	0	Pre-Test Eksperimen	None	None	9) Right	🛷 Scale	🔪 Input		
4	PostTestEksperimen	Numeric	8	0	Post-Test Eksperimen	None	None	10	遷 Right	🔗 Scale	🔪 Input		
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24	4												
Data Mara													
Data view	Variable View												
Print										IBM SPSS Statist	ics Processor is	ready Unicode:ON	

13) Klik tombol 'Analyze' pada bagian atas SPSS dan pilih 'Descriptive Statistics'. Dilanjutkan dengan mengklik 'explore'.

<u>File E</u> dit	<u>V</u> iew <u>D</u> ata <u>T</u> ranst	form Ana	lyze <u>G</u> raphs	Utilities	Extensions	Window H	lelp								
	1 🛆 📖 🛩	10	Reports		÷			2							
	Name		Descriptive Statis	stics	•	Erequencies	s		Minaiaa	Calumna	Alian	Manager	Dela	1	
1	ProTostKontrol	Num	Bayesian Statisti	CS	•	Descriptive:	s	s No	wissing	7 Columns	Piaht 2	A Scale	Role Note		
2	Prefestivation	Nume	Ta <u>b</u> les		•	A Explore		No	00	0	Diaht	A Scale	> input		
2	ProTectEksperimen	Nume	Compare Means			Crosstabs		No		0	Pight Pight	A Scale	> Input		
4	PrefestEksperimen	Nume	General Linear M	lodel		TURE Analy	reie	No	00	10	Right	Scale Scale	> Input		
5	- OstrestEkspennen	NUT	Generalized Line	ar Models		Ratio	515	THU I	ile	10	saa rogin		a mpar		
6	-		Mixed Models			0 0 0 0 0 0									
7			Correlate		•	P-P Plots									
8			Regression			Q-Q Plots									
9	-		L <u>og</u> linear												
10			Neural Networks	1. State 1.	•										
11	1		Classify		•										
12			Dimension Redu	uction											
13	1		Sc <u>a</u> le		•										
14			Nonparametric T	ests	•										
15			Forecasting												
16			Survival												
17			Multiple Respons	se											
18		53	Missing Value An	alysis											
19			Multiple Imputatio	on											
20			Complex Sample	es											
21		毘	Simulation												
22			Quality Control												
23			ROC Cupie												
24			Protiol and Term	norol Modelie	. h										
	4		Opener and Temp	porar modelli											Þ
Data View	Variable View		Check margening		,	J									
Explore												IBM SPSS Statis	atics Processor is	s ready Unicode	ON

14) Pindahkan semua data ke bagian 'Dependent List'.

ta Explore			×
 Pre-Test Kontrol [Pr Post-Test Kontrol [P Pre-Test Eksperime Post-Test Eksperim 	y	Dependent List: Eactor List: Label <u>C</u> ases by:	Statistics Plots Options Bootstrap
Display	P <u>lots</u> Paste	Reset Cancel Help	
Explore			×
	*	Dependent List:	Statistics Plots Options Bootstrap
□Display ◎ <u>B</u> oth ◎ St <u>a</u> tistics ◎ F	Plots		
ОК	aste	Reset Cancel Help	

15) Pilih tombol 'Plots' dan tandai pilihan 'Normality plots with tests' dan klik tombol Continue dan dilanjutkan klik tombol OK.

ta Explore	×
	Dependent List: Pre-Test Kontrol [Plots Dro Test Ekepori Eactor List: Label <u>C</u> ases by:
Display	
OK Paste	Reset Cancel Help

Explore: Plots	×									
 Boxplots <u>F</u>actor levels together <u>D</u>ependents together <u>N</u>one 	Descriptive <u>S</u> tem-and-leaf <u>H</u> istogram									
✓ Normality plots with tests										
Spread vs Level with Levene Test										
© <u>P</u> ower estimation										
© <u>T</u> ransformed Po <u>w</u> er: Natural log ▼										
O Untransformed										
Cancel Help										

16) Setelah hasil dari uji normalitas muncul, lihatlah tabel 'Test of Normality'. Jika nilai signifikan lebih dari 0,05, maka data terdistribusi normal. Namun, jika nilai signifikan kurang dari 0,05, maka data tidak terdistribusi normal.

т	ests	of	No	rma	litv
	C 3 L 3	•••			

	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk					
	Statistic	df	Sig.	Statistic	df	Sig.			
Pre-Test Kontrol	.156	36	.077	.934	36	.053			
Post-Test Kontrol	.111	36	.200	.955	36	.148			
Pre-Test Eksperimen	.250	36	.050	.870	36	.051			
Post-Test Eksperimen	.184	36	.054	.961	36	.229			

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Pada tabel diatas, dapat disimpulkan bahwa semua data dapat dianggap **berdistribusi normal** berdasarkan kedua uji tersebut, meskipun **Pre-Test Eksperimen** menunjukkan hasil yang marginal pada uji Kolmogorov-Smirnov (*p-value* = 0,050). Dengan hasil ini, data memenuhi asumsi normalitas, sehingga analisis statistik parametrik (seperti uji-t atau ANOVA) dapat dilakukan.

2. Uji Homogenitas

a. Uji Homogenitas dengan Menggunakan Excel

Dalam analisis ini, dilakukan uji homogenitas dengan membandingkan variansi data menggunakan uji F (F-Test Two-Sample for Variances), yang dihitung melalui perangkat lunak Microsoft Excel. Uji homogenitas varians dengan menggunakan Uji F adalah salah satu metode statistik yang digunakan untuk menentukan apakah dua atau lebih kelompok data memiliki varians yang sama. Berikut adalah penjelasan langkah demi langkah tentang cara melakukan uji ini menggunakan Microsoft Excel:

 Persiapkan data dengan memasukkan data hasil pre-test dan post-test untuk kelas kontrol dan kelas eksperimen ke dalam Excel dalam dua kolom terpisah untuk setiap kelompok yaitu Pretest-Kontrol, Pretest-Eksperimen, Posttest-Kontrol, Posttest-Eksperimen).

File	Home	Insert	Page La	yout Form	ulas Data	Review	v View	Help														ments	8 Share 🛩
Past	L X Cut e I⊇ Cop e ≪ For	y ∽ nat Painter			11 V A V 🖄 V				१७ Wrap	Text	Gene \$			Conditional Formatting	Format as	Cell Styles *	Insert I	Delete Format	∑ AutoS ■ Fill ~ ♦ Clear	Sum * Ar Z Sort v Filte	Find & Select *	Add-ins	
	Clipboan		5					Align	ment			Number			Styles			Cells		Editing		Add-ins	
		I X V																					
A A	В						н					м	N				R					w	X
1	Uji Ho	mogenitas	dengan l	Jji F															_				_
2																							_
	kelas	Kontrol	Kelas El	perimen																			_
I No	Pre-Test	Post-Test	Pre-Test	Post-Test																			
5 1	86	82	74	97																			
5 2	79	94	90	82																			
7 3	80	72	75	87																			
8 4	80	92	80	92																			
5	81	86	82	89																			
0 6	82	84	75	93																			
17	78	85	86	85																			
2 8	82	87	85	90																			
B 9	74	80	80	86																			
4 10	77	79	70	82																			
5 11	78	82	85	87																			
6 12	80	85	75	85																			
7 13	80	78	90	87																			
8 14	80	78	75	87																			- 1
3 15	88	08	80	86																			_
0 16	81	81	75	93																			-
1/	75	65	80	82																			_
18	30	97	70	97																			_
19	90	86	78	05																			
5 21	71	83	80	80																			
6 22	83	89	95	92																			
7 23	75	85	80	85																			
10 .04	30	33	00	or							_												_
		Homoge	enitas	Sheet1	lormalitas										-								• •
Select d	estination an	d press ENTE	B or choose	Paste																(FRI) (៣ –	_	- + 100%

2) Buka menu Data Analysis dengan cara klik tab Data di bagian atas Excel. Namun, jika Data Analysis belum muncul, aktifkan dengan membuka File > Options > Add-ins > Analysis ToolPak > Go > Centang Analysis ToolPak.'

- 83	Aut	toSave 🤇) or 🗄	5.6	N v ₩	Homoger	nitas 🗸					♀ Searc	h										▲	o –	o ×
Fil	e	Home	Insert	Page Lay	out For	mulas	Data R	eview	View	Help														Comments	ය Share ~
) Jet Jata ~	From	n Text/CSV n Web n Table/Ran	[& Re [┣ Ба ge	ecent Source isting Conne	ections	Refresh All ~	🛄 Quer 🗄 Prop	ies & Co erties book Lin	nnections	2↓ Z Z↓ S	ort Filt	er To Real	er pply anced	Text to Columns E	🗄 Flash Fill 🔒 Remove Du 🍯 Data Valida	uplicates ation ~	🔚 Consolidate 👔 Data Mode	e H V Ani	hat-If Forec	ast eile	Group ~ Ungroup Subtotal		data Analysis	
			Get & Tra	nsform Data				queries &	Connectio			Sort 8	k filter			Da	ta Tools			Forecast		Outline		Analysis	
V5																									
	A	в	С	D	E	F	G		н	I	J	к	L	м	N	0	Р	Q	R	S	т	U	V	w	× A
1		Uji Ho	mogenitas	dengan U	IJI F																				- 1
3		kelas I	Kontrol	Kelas Ek	perimen																				- 11
4	P	Pre-Test	Post-Test	Pre-Test	Post-Test																				
5	1	86	82	74	97																				
6	2	79	94	90	82																				
7	3	80	72	75	87																				
8	4	80	92	80	92																				
9	5	81	86	82	89																				
10	6	82	84	75	93																				
	/	78	85	86	85																				
12	9	74	87	85	90																				- 11

3) Pilih F-Test Two-Sample for Variances pada jendela Data Analysis, pilih F-Test Two-Sample for Variances dan klik OK.

4) Masukkan Range Data. Pada kotak dialog F-Test, Variable 1 Range: Masukkan range data kelompok pertama yaitu pre-test Kelas kontrol dan ekperimen. Kemudian, Variable 2 Range: Masukkan range data kelompok kedua yaitu data Post-test kelas kontrol dan ekperimen. Pilih apakah data memiliki label (centang jika ada label di baris pertama). tentukan tingkat singnifikansinya yaitu 0,05.

F-Test Two-Sample for Variances		? ×
Input Variable <u>1</u> Range: Variable <u>2</u> Range: <u>Variable 2</u> Range: <u>Alpha:</u> 0.05	\$B\$4:\$B\$40 \$D\$4:\$D\$40	OK Cancel <u>H</u> elp
Output options <u>O</u> utput Range: New Worksheet <u>P</u> ly: New <u>W</u> orkbook		

5) Pilih Output range, yaitu pilih lokasi dimana ingin hasil uji ditampilkan.

Output options		
Output Range:	\$N:\$P	1
O New Worksheet <u>P</u> ly:		
○ New <u>W</u> orkbook		

6) Klik Ok dan excel akan menampilkan tabel yang berisi hasil uji F-Test, termasuk nilai F, P-value, dan F critical. Ulangi langkah yang sama untuk membandingkan varians posttest dari kedua kelompok. sehingga mendapatkan hasil seperti gambar dibawah ini:

F-Test Two	o-Sample fo	or Variance	s F-Test Two	o-Sample fo	for Variances		
	Pre-Test	Pre-Test		Post-Test	Post-Test		
Mean	79.7222	79.2778	Mean	83.1111	87.1667		
Variance	17.8635	26.6063	Variance	24.1016	15.5143		
Observatio	36	36	Observati	36	36		
df	35	35	df	35	35		
F	0.6714		F	1.55351			
P(F<=f) on	0.12175		P(F<=f) on	0.09876			
F Critical o	0.56911		F Critical o	1.75714			

Berdasarkan tabel uji homogenitas diatas, analisis menunjukkan bahwa varians data pada pre-test antara kelas kontrol dan kelas eksperimen memiliki nilai F-hitung sebesar 0,6714 dengan P-value sebesar 0,121754. Karena P-value lebih besar dari 0,05, dapat disimpulkan bahwa varians kedua kelompok pada pre-test adalah homogen. Pada post-test, nilai F-hitung tercatat sebesar 1,553509 dengan P-value sebesar 0,098759. Sama seperti pretest, P-value pada posttest juga lebih besar dari 0,05, sehingga varians antara kelas kontrol dan kelas eksperimen pada post-test juga dianggap homogen. Dengan demikian, data dari kedua kelompok baik pada pre-test maupun post-test memenuhi asumsi homogenitas, yang merupakan syarat penting untuk melakukan analisis statistik lanjutan, seperti uji-t.

b. Uji Homogenitas dengan Menggunakan SPSS

Berikut adalah tahapan untuk melakukan uji homogenitas dengan menggunakan software SPSS pada data pretest dan posttest dengan kelas kontrol dan kelas eksperimen.

1) Copy paste data nilai ke halaman "Data View" pada SPSS. Kategorikan data nilai pada kelas kontrol dengan nomer '1', dan kategorikan data nilai pada kelas eksperimen dengan nomer '2'.

2) Pada halaman "Variabel View", sesuaikan nama dan label variabel data.

								•	45		D	
1	Name	l ype Numoric	Width	Decimals	Label	Values	Missing	Columns	Align	Measure Scolo	Role	
2	Kalas	Numeric	8	0	Kelas	/1 Kelas K	None	8	E Right	Scale	> Input	
3	110100	Humana		•	10000	[1, reside res.	- Horis	•	- rogin		a mpor	
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												

3) Klik kolom 'Value' pada baris 'Kelas', dan atur value sesuai dengan nomer kategori nilai untuk setiap kelas kontrol dan eksperimen.

🔚 Value Labels	×
Value Labels Value: Label:	Spelling
Add 1 = "Kelas Kontrol" 2 = "Kelas Eksperimen" Change Remove	
OK Cancel Help	

4) Klik tombol 'Analyze' pada bagian atas SPSS dan pilih 'Descriptive Statistics'. Dilanjutkan dengan mengklik 'explore'.

<u>Eile Edit</u>	<u>V</u> iew <u>D</u> ata	Transform	<u>Analyze</u> <u>Graphs</u> <u>Utilities</u> E	tensions	Window Help										
i 😂 🖿	. 🕰 🔟		Reports		A		1								
		· •	Descriptive Statistics	•	Erequencies										
13 :			Bayesian Statistics	- F	Descriptives									Visible: 2 of 2	? Variables
	ne Hasil	💑 Kelas	Tables	- F	A Explore	var	var	var	var	var	var	var	var	var	va
19	87	1	Compare Means	•	Crosstabs										-
20	86	1	General Linear Model	- F	TUDE Analysia										
21	83	1	Generalized Linear Models	- F											
22	89	1	Mixed Models	•	Matio										
23	85	1	Correlate	•	P-P Plots										
24	73	1	Regression	- F	🛃 Q-Q Plots										
25	84	1	Loglinear			-									
26	93	1	Neural Networks												
27	84	1	Classify												
28	84	1	Dimension Reduction												
29	81	1	Scale												
30	84	1	Nonparametric Tests												
31	01		Forecasting												
32	04	1	Survival												
24	02	1													
36	13	1	Missing Value Analysis												
36	81	1	Multiple Imputation												
37	97	2	Complex Samples												
38	82	2	Simulation												
39	87	2	Quality Control												
40	92	2													
41	89	2	Contine and Temperal Medaline												•
	4		Spatial and remporal Modeling			***									
Data View	Variable View		Direct margeting												
Evelore										IDM CDCC C	totiotico Droos	ecor lo readu	Link	odo:ON	
Explote										10m 3PSS 5	ausuus Proce	SSOLIS LEADA	Unic	NIO.900	

5) Masukkan data nilai 'Hasil' ke bagian 'Dependent list' dan masukkan data kelas ke bagian 'Factor List'.

Explore			×
Hasil [Hasil]	Plots	Dependent List: Eactor List: Label Cases by:	Statistics Plots Options Bootstrap
		Reast Cancel Liele	
	Paste	Reset Cancel Help	
Explore			×
	•	Dependent List:	Statistics Plo <u>t</u> s Options
	•	💑 Kelas [Kelas]	<u>B</u> ootstrap
	•	Label <u>C</u> ases by:]
Display			
	Plots		

6) Pada bagian 'Plots', tandai pilihan 'Power Estimation'. Lalu klik 'Continue' dan klik 'OK'.

Explore: Plots	×							
 Boxplots <u>■</u> Eactor levels together <u>■</u> Dependents together <u>■</u> One 	Descriptive Stem-and-leaf							
Normality plots with tests								
Spread vs Level with Lever	ne Test							
Over estimation								
O Transformed Power:	Vatural log 🔹 🔻							
© <u>U</u> ntransformed								
Cancel Help								

7) Setelah hasil dari uji homogenitas muncul, lihatlah tabel 'Test of Homogeneity of Varience'. Jika nilai signifikan lebih dari 0,05, maka data homogen. Namun, jika nilai signifikan kurang dari 0,05, maka data tidak homogen.

		Levene Statistic	df1	df2	Sig.
Hasil	Based on Mean	.775	1	70	.382
	Based on Median	.725	1	70	.397
	Based on Median and with adjusted df	.725	1	64.736	.398
	Based on trimmed mean	.888	1	70	.349

Test of Homogeneity of Variance

Pada tabel diatas, dapat disimpulkan bahwa semua metode menunjukkan bahwa *p-value* > 0,05, sehingga asumsi **homogenitas variansi** terpenuhi. Dengan hasil ini, analisis statistik parametrik seperti uji-t atau ANOVA dapat dilakukan tanpa khawatir melanggar asumsi homogenitas.

3. Perbandingan Hasil Uji Excel dan SPSS

SPSS menyediakan langkah-langkah yang lebih terstruktur dengan antarmuka yang user-friendly, sementara Excel memerlukan lebih banyak perhitungan manual. Dan tidak terdapat perbedaan signifikan dalam hasil analisis antara SPSS dan Excel, meskipun SPSS memberikan interpretasi yang lebih langsung.

SIMPULAN

Hasil analisis menunjukkan bahwa data pre-test dan post-test siswa dari kelas kontrol dan eksperimen memenuhi asumsi normalitas dan homogenitas, baik dengan SPSS maupun Excel. Kedua perangkat lunak menghasilkan hasil yang konsisten, namun SPSS lebih unggul dalam kemudahan penggunaan dan interpretasi. Excel, meskipun memerlukan perhitungan manual, tetap

memberikan hasil yang valid. Penelitian ini menekankan pentingnya pemilihan perangkat lunak statistik yang sesuai untuk analisis data pendidikan guna memastikan keakuratan hasil. Temuan ini diharapkan dapat mendukung penelitian pendidikan di masa depan dan meningkatkan kualitas evaluasi pembelajaran.

UCAPAN TERIMA KASIH

Kami mengucapkan terima kasih yang sebesar-besarnya kepada Bapak Muhammad Nursalman, dosen mata kuliah Statistika Terapan, atas bimbingan dan arahannya selama proses penyusunan penelitian ini. Semoga hasil dari penelitian ini dapat memberikan manfaat bagi pengembangan ilmu pengetahuan di bidang pendidikan.

DAFTAR PUSTAKA

- Achmad, G.H., Ratnasari, D., Amin, A., Yuliani, E., & Liandara, N. (2022). Penilaian Autentik pada Kurikulum Merdeka Belajar dalam Pembelajaran Pendidikan Agama Islam di Sekolah Dasar. Edukatif: Jurnal Ilmu Pendidikan, 4(4).
- Dewi, R.S., & Supriyadi, S. (2020). Pengaruh Media Pembelajaran Berbasis Teknologi Informasi Terhadap Hasil Belajar Siswa. Jurnal Pendidikan Indonesia, 5(3), 200-210.
- Firmansyah A., & Wibowo A.D.P. (2024). Penerapan Model Pembelajaran Aktif dengan Uji Normalitas dan Homogenitas Data untuk Meningkatkan Hasil Belajar Siswa di Sekolah Menengah Pertama. Jurnal Edukasi dan Pembelajaran, 11(1).
- Hidayati, N., & Setiawan, A.B. (2021). "Pengaruh Metode Pembelajaran Terhadap Hasil Belajar". Jurnal Pendidikan, 15(3), 200-210.
- Lestari N.P., & Rahmawati D.A.E. (2022). Analisis Uji Normalitas dan Homogenitas pada Penelitian Tindakan Kelas Menggunakan SPSS dan Excel di Sekolah Dasar. Jurnal Riset Pendidikan, 14(3).
- Marisa, A., & Fitriani, L. (2021). Tantangan dan Peluang Implementasi Kurikulum Merdeka di Sekolah Dasar. Jurnal Ilmu Pendidikan, 2(1), 45-58.
- Mulyasa, E., & Suparno, P. (2020). Manajemen Pembelajaran Berbasis Teknologi Informasi: Konsep dan Implementasi. Jurnal Pendidikan, 10(2), 100-115.
- Nugroho, A., & Wulandari, S. (2020). Peningkatan Mutu Pendidikan Melalui Proses Belajar Mengajar di Era Digital. Jurnal Pendidikan Indonesia, 5(1), 10-20.
- Pratiwi D.E., & Sari R.P. (2023). Uji Normalitas dan Homogenitas Data dalam Penelitian Pendidikan Menggunakan SPSS dan Excel. Jurnal Penelitian Pendidikan, 16(1).
- Rosari, R., & Patras, I.M. (2023). Peran Guru Dalam Meningkatkan Motivasi Belajar Siswa Di Era Digitalisasi Pendidikan. Jurnal Pendidikan, 12(1), 150-160.
- Santoso A.B., & Utami D.P.W. (2023). Pengaruh Model Pembelajaran Kooperatif terhadap Hasil Belajar Siswa dengan Uji Normalitas dan Homogenitas Data Menggunakan SPSS. Jurnal Pendidikan Dasar, 9(1).
- Suparno, P., & Kuncoro, M.H. (2020). Analisis Penggunaan Software SPSS Dalam Penelitian Pendidikan: Studi Kasus Di Sekolah Menengah Pertama. Jurnal Ilmiah, 8(2), 123-130.
- Susetiyo, B., & Fitriani, L.A. (2022). Kreativitas Guru Dalam Pembelajaran Di Masa Pandemi Covid-19: Sebuah Tinjauan Teoritis Dan Praktis. Jurnal Ilmu Pendidikan, 3(2), 75-85.
- Yulianti D.F., & Prasetyo E.B.W. (2024). Evaluasi Metode Pembelajaran dengan Pendekatan Kuantitatif: Uji Normalitas dan Homogenitas Menggunakan SPSS di Kelas IV SDN X Jakarta Selatan. Jurnal Ilmu Pendidikan, 17(2).
- Zulkarnain, M., & Arifin, Z.A. (2022). "Perbandingan Software Statistik dalam Analisis Data Pendidikan". Jurnal Ilmiah, 8(2), 123-130.