
ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1960 

 

Database Tuning in Hospital Applications Using Table Indexing and 
Query Optimization 

 

Samidi1, Daniel Iskandar2, Muhamad Fachruroji3, Wahyu Adi Septyo 
Wibowo4, Afifah Khaerani A5 

1,2,3,4,5 Fakultas Teknologi Informasi, Universitas Budi Luhur 
e-mail: samidi.indonesia@gmail.com

1
, danielisk2000@gmail.com

2
, 

aku1712@gmail.com3, wahyuadisetyowibowo@gmail.com4, 
afifahkhaerani04@gmail.com5 

 
Abstrak 

 
RDBMS telah menjadi kebutuhan mendasar bagi semua perusahaan dan diharapkan dapat 
memberikan informasi secara tepat waktu, akurat, dan andal. Sayangnya, pertumbuhan data 
yang eksponensial biasanya menyebabkan masalah kinerja database, yaitu waktu eksekusi 
kueri yang lambat sebagai salah satu masalah utama. Pilihan untuk meningkatkan kinerja 
database adalah dengan melakukan penyetelan database menggunakan pengindeksan 
tabel dan optimisasi kueri. Tujuan utama dari penelitian eksperimental ini adalah untuk 
membandingkan waktu respon database sebelum dan sesudah proses tuning database. 
Kami memilih Sistem Informasi Rumah Sakit sebagai objek kami di mana kami mengerjakan 
jutaan data dan mengeksekusi beberapa kueri SQL untuk melihat perbedaan waktu respons 
sebelum dan sesudah penyetelan basis data. Akibatnya, untuk mengambil 1.039.852 baris 
data Patient Care dibutuhkan 743 detik sebelum penyetelan, dan hanya 46 detik setelah 
penyetelan. 
 
Kata kunci: RDBMS, Penyetelan Basis Data, Pengindeksan Tabel, Pengoptimalan Kueri, 

SQL 
 

Abstract 
 

RDBMS has become a fundamental need for all companies and is expected to provide 
information timely, accurately, and reliably.  Unfortunately, exponential growth of data usually 
leads to database performance issues, namely slow query execution time as one major 
problem.  An option to enhance database performance is to perform database tuning using 
table indexing and query optimization.  The main aim of this experimental research is to 
compare database response time before and after database tuning process.  We chose a 
Hospital Information System as our object where we worked on millions of data and executed 
some SQL queries to see the difference of response times before and after the database 
tuning.  As a result, to retrieve 1.039.852 rows of Patient Care data it took 743 seconds 
before tuning, and only 46 seconds after tuning.  
 
Keywords : RDBMS, Database Tuning, Table Indexing, Query Optimization, SQL. 
 
INTRODUCTION 

In Industry 4.0, Relational Database Management System (RDBMS) has become one 
of the basic needs for all companies.  Nowadays data is a very valuable asset, and having 
the access to it is absolutely necessary [1].  Obviously, a reliable RDBMS is expected to 
support the organization by providing information accurately and timely. 

When the frequency of transactions increases and the amount of data has been 
exploding, we often found a database-based application performs slowly due to poor 
database performance.  It is reflected in the increasing of response time needed when an 
SQL query executed.  Big datasets can cause overhead to Database Management System 
(DBMS) and lead to database performance issues [2].  Similarly, it happened to the database 



ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1961 

 

of Hospital "XYZ", which is one of the issuers that has been using Enterprise Resource 
Planning (ERP) since five years ago.  This research was conducted at the Hospital "XYZ" 
where a decrease of database performance was shown by the data retrieval process 
became slow along with the increase in daily transactions and data production. 

 RDBMS is a relational Database Management System in which data is stored in the 
form of tables [6].  To access the database contents we can use SQL statements.  SQL 
(Structured Query Language) is a language used to access and manipulate database 
contents [7]. 

 SQL statement or query must be written with a systematic technique in order to get 
effectiveness namely faster time response.  To make sure the SQL query has been written in 
a proper way we can perform a query optimization.  According to Elmasrti and Navathe, 
query optimization is an activity conducted by a query optimizer in a DBMS to select the best 
available strategy for executing the query [8].  In line with that, Patel wrote that query 
optimization is the procedure of choosing the most systematic technique to accomplish a 
SQL statement.  The main goal of database optimization is usually common, namely to 
improve a numeric value, which characterizes database performance well [16]. 

 In addition to the query optimization, to get a good database performance, the 
database itself must be designed and developed properly.  One thing must be taken into 
consideration when we develop a database is the indexing technique since it generally 
improves the data retrieval operations.  The function of index in a database is similar to the 
index function in a textbook.  Using an appropriate index to databases is the most important 
aspect to optimize database operation [7].  Mentioned by Balasubramanian [10] that 
information retrieval can be made more efficient by using indexes to provide rapid access to 
database table contents. 

 Guzun wrote that to support efficient ad hoc queries, appropriate indexing mechanism 
must be in place [11].  Indexing has always been a key technique to improve performance in 
database systems [12].  As presented by Chopade [14] that indexing is an important concept 
to search data faster.  Index tuning, as part of the physical database design, is the task of 
selecting, creating, deleting, and rebuilding index structures to reduce workload processing 
time [17]. 

 In the previous study, Bajaj [1] analysed the decrease of database performance, 
using indexing and query optimization method, and stated that database performance can be 
improved by modify the SQL query and database indexing, however his study does not 
include experimental testing and comparison result.  Rahman [4] found that slow 
performance issue in database based application can be solved by indexing which make 
SQL queries may be much faster.  Chopade [14] also concluded that in the MongoDB 
database indexing has an important role to improve database performance.  In another 
research related to MySQL database slow performance issue, Hidayat [5] succeeded in 
improving the database performance by implementing query optimization that make query 
process faster.   

 The difference between this study and previous studies is that the object of this 
research is the database of Hospital "XYZ" and we used table indexing and query 
optimization methods.  The main aim of this experimental research is to compare database 
response time before and after database tuning process. 

   
METHOD RESEARCH 

This experimental research choose the Patient Care module of Hospital “XYZ” 
application as the object.  This module recorded hospital daily transactions namely the 
procedures done by the medics and the consumption of drugs and consumables given to the 
patients as a treatment.  Data produced in this module will be the main data source for 
patient invoicing process.  Sample data are taken from eight tables in Patient Care module.  
In this experiment we used a MySQL sample database contained 32,043,471 rows of data. 



ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1962 

 

Figure 1 – Eight steps in this study 

 Several tests are performed by running several SQL commands on the selected 
tables and measuring the response time to display the data from the SQL command. The 
tests were performed in two different database conditions, before and after tuning process. 

 Eight steps taken in the study were (1) extracting data from several tables of the 
HospitalDB database, which is the "XYZ" Hospital database; (2) data transformation; (3) load 
data into MySQL sample database; (4) run the SQL command and record the results of the 
first test. The next step is (5) Table Indexing, which is to determine and create indexes on all 
tables; then (6) is performing SQL Optimization by rewriting the SQL query, (7) is executing 
the SQL command and recording the results of the second test. The final step is (8) 
comparing the results of the first and second tests. Figure 1 illustrates the steps.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 illustrates the steps.  
 

EXPERIMENTAL AND COMPARISON STUDY 

 Hospital “XYZ” uses an ERP, where there are several modules including Inventory, 
Bed Management, Procurement, Consignment, Patient, Registration, Patient Care, Medical 
Record, Invoice, Payment, Voucher, and BPJS as well as several other modules. 

 The objects in this study are eight tables related to the Patient Care module which 
records all procedures done by the medics and all medicines given to the patients as a 
therapy. The tables are m_doctor, m_inventory, m_patient, m_procedure, m_unit, 
t_patientcare, t_medicine, and t_procedure, which are depicted in an Entity Relationship 
Diagram (ERD) as shown in Figure 2. 

  
 
 
 

 
 
 
 
 
 
 
 
 
 



ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1963 

 

 The differences between SQL queries executed before and after database tuning are 
as follows: 

Tabel 1 – SQL queries before and after query optimization 
 

BEFORE AFTER 

 
Query 1 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.*, c.*, d.* 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and month (a.date_trans) in (1) 

 and year(a.date_trans) in 2021 
 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.no_dokter, 

c.name_doctor, 
 d.price 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and a.date_trans between „2021-01-01 

00:00:00‟ and „2021-01-31 23:59:59‟ 

 
Query 2 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.*, c.*, d.* 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and month (a.date_trans) in (1,2) 

 and year(a.date_trans) in 2021 
 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.no_dokter, 

c.name_doctor, 
 d.price 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and a.date_trans between „2021-01-01 

00:00:00‟ and „2021-02-28 23:59:59‟ 

 

BEFORE AFTER 

 
Query 3 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.*, c.*, d.* 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.no_dokter, 

c.name_doctor, 
 d.price 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 



ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1964 

 

 and a.no_patient = e.no_patient 
 and month (a.date_trans) in (1,2,3) 

 and year(a.date_trans) in 2021 
 

 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and a.date_trans between „2021-01-01 

00:00:00‟ and „2021-03-31 23:59:59‟ 
 

 
Query 4 

Select a.no_trans, a.date_trans, a.no_patient,  
 e.name_patient, b.*, c.*, d.* 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and month (a.date_trans) in (1,2,3,4) 

 and year(a.date_trans) in 2021 
 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.no_dokter, 

c.name_doctor, 
 d.price 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and a.date_trans between „2021-01-01 

00:00:00‟ and „2021-04-30 23:59:59‟ 
 
 
 
 

 
Query 5 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.*, c.*, d.* 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and month (a.date_trans) in (1,2,3,4,5) 

 and year(a.date_trans) in 2021 
 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.no_dokter, 

c.name_doctor, 
 d.price 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and a.date_trans between „2021-01-01 

00:00:00‟ and „2021-05-31 23:59:59‟ 

 
Query 6 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.*,  c.*, d.* 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 
 m_procedure as d, 
 m_patient as e 

Select a.no_trans, a.date_trans, a.no_patient, 
 e.name_patient, b.no_dokter, 

c.name_doctor, 
 d.price 
From t_patientcare as a, 
 t_pcare_procedure as b, 
 m_doctor as c, 



ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1965 

 

Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and month (a.date_trans) in (1,2,3,4,5,6) 

 and year(a.date_trans) in 2021 
 

 m_procedure as d, 
 m_patient as e 
Where a.no_trans = b.no_trans 
 and b.no_doctor = c.no_dokter 
 and d.no_procedure = b.no_procedure 
 and a.no_patient = e.no_patient 
 and a.date_trans between „2021-01-01 

00:00:00‟ and „2021-06-30 23:59:59‟ 
 

  
 

 In this study, SQL commands are used to call patient care transaction data with 
several variations in the time span.  

 In this research, the Query Optimization process is carried out by applying some 
changes to the SQL command. The first change removes all asterisks '*' contained in 
'SELECT' since this slows down the query process.  The asterisk is replaced by the required 
column name.  In the example above, 'b.*' is replaced by 'b.no_doctor' because what is really 
needed in the query is only the doctors number. Then 'c.*' was changed to 'c.name_doctor' 
because the only column needed was the doctor's name information.  And finally, 'd.*' is 
replaced by 'd.price' since we only need the selling price column. 

 The second change is in the 'WHERE CLAUSE' section. To limit the transaction time 
range, before optimization, the conditions 'month (a.date_trans) in (1) and year(a.date_trans) 
in 2021' are used. The use of this condition makes the process of calling data slower even 
though the 'date_trans' column has been indexed. Then optimization is done by changing 
this condition to "a.date_trans between '2021-01-01 00:00:00' and '2021-01-01 23:59:59'" 

 In this study, indexes were made on several tables so that the data retrieval process 
became faster. The index created is as in Table 2. Some SQL commands that are executed 
to create the index in this study are: 

 CREATE INDEX idx_no_patient ON t_patientcare (no_patient); 
 CREATE INDEX idx_no_doctor ON m_doctor (no_doctor); 
 CREATE INDEX idx_no_procedure ON m_procedure (no_procedure); 

 
Table 2 – Creating table indexes. 

Tables Columns 
‘t_patientcare’ ‘no_trans’, ‘no_patient’, ‘date_trans’. 

‘t_pcare_procedure’ ‘no_trans’ dan ‘no_procedure’, ‘no_procedure’, 

‘no_doctor’. 

‘t_pcare_medicine’ „no_trans’ dan ‘no_item’, kolom ‘no_item’. 

‘m_doctor’ ‘no_doctor’. 

‘m_procedure’ ‘no_procedure’. 

‘m_patient’ „no_patient’. 

‘m_inventory’ ‘no_item’. 

‘m_unit’ ‘no_unit’. 

  
 All Primary Key and Foreign Key columns are indexed. An example is the column 

'no_trans' in the table 'tpatientcare'. Then the column that is read in the 'WHERE CLAUSE' 
condition is also indexed so that the query process becomes faster, for example, the 
'date_trans' column in the 't_patientcare' table. 

 In the database there are three transaction tables with the following data: the 
transaction table 't_patientcare' has 8,118,063 rows of data with a storage usage of 871 MB; 
the transaction table 't_pcare_medicine' has 6,955,626 rows of data using 824 MB; and the 
table 't_pcare_procedure' contains 16,959,729 rows of data consuming 2.4 GB. 



ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1966 

 

Figure 2 - Graph comparison between “Before Tuning” and “After 
Tuning” 

 
 The test is carried out by calling the number of rows of data that vary, so we can see 

the response time trend of each query 177,608 rows of data were successfully called. Before 
optimization it needed 699 seconds while after optimization it took only 8 seconds. Next is to 
obtain 337,640 rows of data in the second query, before optimization it took 713 seconds and 
then becomes 16 seconds after optimization. The third query produces 515,442 rows of data, 
before optimization it took 722 seconds, after optimization it became 24 seconds. 

 The fourth query resulted in 689,656 rows of data, before optimization it took 729 
seconds, and after optimization it became 32 seconds. The fifth query displays 867,310 rows 
of data with a response time of 735 seconds and then decreases to 39 seconds after 
optimization. The last query managed to call 1,039,852 rows of data, which before 
optimization it took 743 seconds, and after optimization it became 46 seconds. The test 
results are shown in table 3 and Figure 3 below. 

 
Table 3 – Time response comparison between “Before Tuning” and “After Tuning”. 

 
SQL 

Query 
DATA 
ROW 

(records) 

BEFORE 

(seconds
) 

AFTER 

(seconds
) 

DIFFERE
NCE 

Query 1 177.608 699 8 99% 

Query 2 337.640 713 16 98% 

Query 3 515.442 722 24 97% 

Query 4 689.656 729 32 96% 

Query 5 867.310 735 39 95% 

Query 6 1.039.852 743 46 94% 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION AND RECOMMENDATION 

 The test results show the comparison of the time required for the database to run 
SQL commands before and after database optimization is carried out. SQL queries run faster 
after database optimization. This supports previous studies which state that there are several 



ISSN: 2614-6754 (print)          
ISSN: 2614-3097(online) 

Halaman 1960-1967 
Volume 6 Nomor 1 Tahun 2022 

 

  

 Jurnal Pendidikan Tambusai 1967 

 

ways to improve database performance, including by doing Table Indexing [7] and Query 
Tuning [6]. 

Recommendation for Hospital "XYZ" is to run database tuning on all application 
modules. The research that has been carried out on the Patient Care module can be used as 
an example to be applied to other modules that also produce large amounts of operational 
data such as the Inventory Management and Invoicing modules. 

 For further research, we suggest another database research that measures the 
burden and costs incurred by creating an index in the database because table indexing is 
estimated to require 5%-15% of additional storage media [13].  Finally, please keep in mind 
that query optimization must be done efficiently in terms of time and resources [15. 
 
REFERENCES 
Moura et. al, “Management and Ownership: A Data Strategy in the Industry 4.0 Context”, 

Conference Paper, BDIOT, 2019. 
Khushairi et. al, “Database Performance Tuning Methods for Manufacturing Execution 

System”, World Applied Sciences Journal 30, 2014. 
Bajaj, PL, “A Survey on Query Performance Optimization by Index Recommendation”, 

International Journal of Computer Applications (0975 – 8887) Volume 113 – No. 19, 
2015. 

Rahman, et. Al, “Analyze Database Optimization Techniques“, IJCSNS International Journal 
of Computer Science and Network Security, VOL.10 No.8, 2010. 

Hidayat et. al, “Genetic Algorithm for Relational Database Optimization in Reducing Query 
Execution Time”, Scientific Journal of Informatics Vol. 5, No. 1, 2018. 

Bachav et. al, “Query Optimization for Databases in Cloud Environment: A Survey”, 
International Journal of Database Theory and Application, Vol.10, No.6 ISSN: 2005-
4270 IJDTA, 2017. 

Abbas et. al, “Query Performance in Database Operation”, PS-FTSM-2020-045, 2020. 
Elmasri and Navathe, “Fundamental Of Database Systems Seventh Edition”,  ISBN-13: 978-

0-13-397077-7, Pearson, 2016. 
Patel and Patel, “A Review Paper on Different Approaches for Query Optimization using 

Schema Object base View”, International Journal of Computer Applications (0975 – 
8887) Volume 114 – No. 4, 2015. 

Balasubramanian et. al, “Dynamic Integrated Database Index Management”, United States 
Patent No. 8489565 B2, 2013. 

Guzun, “Hybrid Query Optimization For Hard-To-Compress Bit-Vectors”, The VLDB Journal 
DOI: 10.1007/s00778-015-0419-9, 2016. 

Medina et. al, “Evaluation of indexing strategies for possibilistic queries based on indexing 
techniques available in traditional RDBMS”, International Journal of Intelligent 
Systems Vol. 31 Issue 12, 2016. 

Yu et. al, “Two Birds, One Stone: A Fast, yet Lightweight, Indexing Scheme for Modern 
Database Systems”, Proceedings of the VLDB Endowment, Vol. 10, No. 4, 2016. 

Chopade et. al, “MongoDB Indexing For Performance Improvement”, ICT System and 
Sustainability Proceedings of ICT4SD Vol. 1, 2019. 

Ortiz et. al, “Learning State Representations for Query Optimization with Deep 
Reinforcement Learning”, DEEM 18, https://doi.org/10.1145/3209889.3209890, 2018. 

Moszi et. al, “A Session-based Approach to Autonomous Database Tuning”, Acta 
Polytechnica Hungarica, Vol. 17, No. 1, 2020. 

Fuentes et. al, “Database Tuning With Partial Indexes”, Conference Paper SBBD 33rd, 
https://www.researchgate.net/publication/336497706_Database_Tuning_with_Partial
_Indexes, 2018 

 


