ISSN: 2614-6754 (print) ISSN: 2614-3097(online)

Analisis Gangguan Hubung Singkat 3 Fasa pada Sistem Kelistrikan PT. Petrokimia Gresik Pabrik Utilitas 1a

Wahid Julianto¹, Denny Irawan²

^{1,2} Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Gresik, Indonesia

e-mail: wahidjulianto28@gmail.com

Abstrak

PT. Petrokimia Gresik merupakan perusahaan yang berada di bawah naungan Pupuk Indonesia Persero yang memiliki tugas utama memasok pasukan pupuk subsidi dan non subsidi pada seluruh daerah Indonesia. Untuk menjaga stabilitas pupuk di pasaran Indonesia maka diperlukan sistem kelistrikan yang handal agar tidak menggangu proses produksi. Sistem tenaga kelistrikan di pabrik sanggat rawan degan gangguan, baik gangguan singkat 3 fase, overload dan fasa ke ground. Jika gangguan ini tidak dapat diminimalkan dapat menimbulkan kerusakan pada peralatan yang terpasang. Untuk meminimalisir kondisi di atas maka perlu adanya sistem pengamanan dan peralatan pegamanan yang memadahi. Salah satu pengamanan yang digunakan oleh PT. Petrokimia Gresik adalah relay proteksi yang berada di pabrik Utilitas 1A. Pada penelitian ini, akan menggunakan software Etap Power Station version 12.6 aplikasi akan sanggat membantu dalam perhitungan hubungan singkat terjadi pada Busbar 6 KV dan Busbar 400 V. Dengan bantuan software ini dapat analisa menggenai kemampuan Bus terhadap gangguan hubungan singkat. Dari hasil perhitungan yang diperoleh menunjukan bahwa kemampuan brancing busbar serta kapasitas circuit breaker yang terpasang di sistem kelistrikan PT. Petrokimia Gresik apakah masih cukup baik untuk menahan gangguan yang ada.

Kata kunci: Relay Proteksi, Arus Lebih, Brucing, Busbar, ETAP

Abstract

PT. Petrokimia Gresik is a company under the auspices of Pupuk Indonesia Persero which has the main task of supplying subsidized and non-subsidized fertilizers to all regions of Indonesia. To maintain the stability of fertilizers in the Indonesian market, a reliable electrical system is needed so as not to disrupt the production process. The electrical power system at the factory is very prone to disturbances, both short 3-phase interruptions, overload and phase to ground. If this interference cannot be minimized, it can cause damage to the installed equipment. To minimize the above conditions, it is necessary to have a security system and adequate security equipment. One of the safeguards used by PT. Petrokimia Gresik is a protection relay located at the 1A Utility factory.In this study, the Etap Power Station version 12.6 software will be used, the application will be very helpful in calculating short circuits that occur on 6 KV Busbars and 400 V Busbars. With the help of this software, we can analyze the ability of the Bus to short circuit disturbances. From the calculation results obtained, it shows that the busbar bracing ability and the capacity of the circuit breaker installed in the electrical system of PT. Is Petrokimia Gresik still good enough to withstand the existing disturbances.

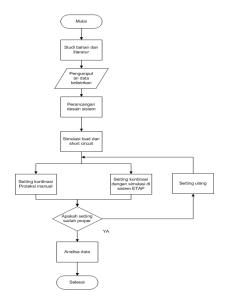
Keywords: Protection Relay, Overcurrent, Brucing, Busbar, ETAP

PENDAHULUAN

PT. Petrokimia Gresik merupakan salah satu perusahaan yang berada di bawah naungan pemerintah yang bergerak di bidang agroindustri. Produk utama yang dihasilkan oleh perusahaan tersebut adalah Urea, Petroganik, NPK Phonska, SP-36, dll. Selain produk utama

ISSN: 2614-6754 (print) ISSN: 2614-3097(online)

PT. Petrokimia Gresik juga menghasilkan hasil samping dari produk non pupuk antara lain Asam Sulfat, *Dry Ice*, *Cement Retarder*, dll. Guna mendukung dari program pemerintah dalam menjaga ketahanan pangan nasional PT. Petrokimia Gresik harus memiliki sistem yang handal, terutama untuk unit Utilitas 1A karena unit ini perananya sanggat vital dalam kelangsunggan hidup pabrik lain [1].


Pada unit utilitas 1A terdapat genset yang difungsikan sebagai *premover* sebuah pembangkit gas turbin generator. Gas turbin generator ini mempunyai daya 36 MW peranannya sangat vital untuk kelangsungan pabrik 1A dan 1B. Maka seperti pada umumnya sistem tenaga listrik tidak pernah lepas dari adanya gangguan pada sistem tenaga listrik. Gangguan pada sistem tenaga listrik antara lain terjadi *short circuit* antara fase ke fase atau dari fase ke *ground*. Gangguan-gangguan tersebut pasti akan membuat performa pabrik menurun dan dapat menimbulkan *shutdown* yang tidak terencana.

Untuk meminimalisir terjadinya gangguan tersebut, maka diperlukan suatu koordinasi proteksi agar keandalan dan kontinuitas pendistribusian sistem tenaga listrik menjadi lebih handal. Ketika terjadi gangguan, *relay* proteksi mendeteksi gangguan dan men*trigger* CB (*Circuit Breaker*) untuk bekerja dalam waktu tertentu untuk mengisolir gangguan.

Sistem koordinasi proteksi yang digunakan di dunia industri terutama di PT. Petrokimia Gresik salah satunya adalah proteksi *short* fasa ke fasa dan fasa ke *ground. Relay* arus lebih didesain untuk dapat berkoordinasi dengan *relay* yang lainnya yang nantinya dapat membuat suatu sistem koordinasi proteksi yang handal untuk menyeleksi dan memilah-milah gangguan yang terjadi. Dari permasalahan ini peneliti ingin melakukan perhitungan hubungan singkat yang diharapkan dapat menambah referensi di PT. Petrokimia gresik.Metode yang akan digunakan adalah perhitungan manual dan oleh sistem ETAP 12.6 agar didapatkan hasil cepat dan akurat asal data yang didapat memenuhi untuk dilakukan penelitian.

METODE

Pada bab ini berisi tentang tahapan dari metode penelitian yang akan dilakukan untuk menyelesaikan penelitian ini. Secara umum, tahapan tersebut akan dijelaskan dalam bentuk gambar *flowchart* seperti gambar di bawah ini.

Gambar 1. Flowchart Penelitian

Studi Literatur

Pada tahap awal dalam penyusunan penelitian tugas akhir ini dimulai dengan studi literatur, yaitu mencari informasi melalui buku-buku, jurnal, artikel, dan internet yang berhubungan dengan elemen-elemen yang dipakai dalam penelitian ini. Sumber langsung didapatkan dari hasil diskusi maupun konsultasi dengan dosen pembimbing atau orang yang

Halaman 20939-20945 Volume 7 Nomor 3 Tahun 2023

ISSN: 2614-6754 (print) ISSN: 2614-3097(online)

mempunyai kompetensi di bidang ini. Adapun literatur-literatur yang dipelajari adalah sebagai berikut :

- 1. Sistem Tenaga Listrik
- 2. Sistem Koordinasi Proteksi Relay Arus Lebih
- 3. Software ETAP 12.6

Pengumpulan Data

Pada tahap ini dilakukan pengumpulan data yang digunakan untuk menyelesaikan penelitian ini. Teknik yang digunakan dalam pengumpulan data yaitu menggunakan metode diskusi secara langsung dan pengambilan dokumen data yang dibutuhkan untuk penelitian tugas akhir ini.

Pengumpulan data yang dibutuhkan antara lain seperti generator, transformator, motor, bus, kabel, sistem pentanahan, dan *relay* proteksi. Data yang dibutuhkan adalah sebagai berikut :

- 1. Manufaktur
- 2. kV rating
- 3. Pf (Power factor) rating
- 4. FLA (Full Load Ampere)
- 5. Impedansi
- 6. Daya
- 7. Hubungan belitan pada generator, transformator, dan motor

Sistem Distribusi Energi listrik

Sistem distribusi kelistrikan pabrik utilitas 1A. Terdapat 2 sumber listrik yang dapat digunakan untuk menghidupi unit utilitas 1A. yang pertama *power* dari unit gas turbin generator dan yang kedua dari PLN. Pada mode normal *power* akan menggunakan sumber dari gas turbin generator. Selanjutnya, tenaga listrik disalurkan melalui *cubicle* dan diturunkan menggunakan trafo *step down* menjadi tegangan 380 Volt.

Simulasi Short Circuit Fasa to Fasa

Simulasi *short-circuit* adalah simulasi yang digunakan untuk mendapatkan besar nilai arus hubung singkat ketika terjadi gangguan. Analisa hubungan singkat fasa to fasa ini akan digunakan sebagai acuan penelitian. Apakah kondisi busbar dan kabel yang ada sudah aman jika terjadi gangguan.

HASIL DAN PEMBAHASAN

Hubung Singkat pada Bus MV 6 Kv Switchgear SS 0

Setelah dilakukan perhitungan dengan menggunakan software ETAP 12.6 maka didapatkan data arus *short circuit* atau hubung singkat yang terjadi pada bus 6 KV Breaker (Swtchgear) sebagai berikut :

½ Cycle fault bus number :6 kV Switchgear

Nominal kV = 6.00; Base kV=6.00

Prefault voltage = 100% of nominal bus kV

= 100% base kV

ISSN: 2614-6754 (print) ISSN: 2614-3097(online)

Tabel 1 Short Circuit 20 KV Breaker

Contibution		3 Phase fault	
From ID	To bus	% V From bus	kA Symm.rms
Incoming from SS GTG	Bus SS 0	0.00	13.5
Incoming from TR 2281 (PLN)	Bus SS 0	0.01	18.66
TR 1	Bus SS 0	0.00	12.43
TR 2	Bus SS 0	0.00	12.43
107 JDM	Bus SS 0	0.00	14.16
MP 1103A	Bus SS 0	0.00	13.99
MP 1216A	Bus SS 0	0.00	13.99
MP 1103B	Bus SS 0	0.00	13.99
MP 1216B	Bus SS 0	0.00	13.99
MP 1212A	Bus SS 0	0.00	13.99
MP 1216C	Bus SS 0	0.00	13.99
MP 1212B	Bus SS 0	0.00	13.99
MP 1103C	Bus SS 0	0.00	13.99
MP 1212C	Bus SS 0	0.00	13.99
MC 11021	Bus SS 0	0.00	13.99
MC 2231E	Bus SS 0	0.00	13.99

Tabel 2 Data pada Bus Switchgear 6 KV

Nama Bus	Rating		Kapas	sitas
	Tegangan (Kv)	Arus (A)	Bracing (kA)	MV Asymm
Bus 6 Kv SS 0	6	2000	40	1286.084

Analisis:

Dari hasil perhitungan yang dilakukan komputer didapatkan arus hubung singkat 3 fasa dan fasa ke tanah pada bus Switchgear 6 kV sebesar 18.660 kA.Nilai ini masih lebih rendah daripada kapasitas bracing busbar yaitu 40 kA. Daya hubung singkat di bus Switchgear 6 kV adalah :

MVAhs = $\sqrt{3}$ x kVdasar x lhs

- $= \sqrt{3} \times 6 \times 18.660$
- = 193.92 MVA

Hubung Singkat pada Bus MV 6 kV Switchgear SS 3

Hasil perhitungan hubung singkat pada bus MV 5 KV Switchgear di SS 3 tercantum di dalam tabel 4-2 yaitu sebagai berikut :

1/2 Cycle fault at bus number: MV 6 kV Switchgear

Nominal kV = 6.00; Base kV = 6.00 Prefault voltage = 100% of nominal bus kV

ISSN: 2614-6754 (print) ISSN: 2614-3097(online)

= 100% base kV

Tabel 3 Short Circuit Report MV 6 kV Switchgear SS 3

Contibution		3 Phase fault	
From ID	To bus	% V From bus	kA Symm.rms
TR 3-1	Bus SS 3	0.01	13.99
TR 3-2	Bus SS 3	0.03	13.99
CB 4	Bus SS 3	0.01	13.98

Tabel 4 Data pada Bus Switchgear 6 kV SS 3

Nama Bus	Rating	Kapasitas		
	Tegangan (Kv)	Arus (A)	Bracing (kA)	MV Asymm
Bus 6 Kv SS 3	6	2000	40	1286.084

Analisis:

Dari hasil perhitungan yang dilakukan komputer didapatkan arus hubung singkat 3 fasa dan fasa ke tanah pada bus Switchgear 6 kV sebesar 12.560 kA.Nilai ini masih lebih rendah daripada kapasitas *bracing busbar* yaitu 40 kA.

Daya hubung singkat di bus Switchgear 6 kV adalah :

MVAhs = $\sqrt{3}$ x kVdasar x lhs

 $= \sqrt{3} \times 6 \times 13.99$

= 145.388 MVA

Hubung Singkat pada Substition Bus 400 V

Hasil perhitungan hubung singkat pada bus 400 V Utilitas 1A diambil sampel 5 beban terbesar pada masing-masing bus, tercantum di dalam tabel 5 yaitu sebagai berikut :

Tabel 5 Data Arus Hubung Singkat pada Bus 400 V

Bus	s Information	3 Fase Fault (kA)	
	Bus 102	90.077	
I	Bus 2202A	90.051	
I	Bus 2202B	75.860	
ŀ	Bus 2282A	70.330	
ŀ	Bus 2282B	15.698	
! !	Bus 2202A Bus 2202B Bus 2282A	90.077 90.051 75.860 70.330	

Tabel 6 Data pada Bus 400 V

Nama Bus	Rating	Kapasitas		
	Tegangan (v)	Arus (A)	Bracing (kA)	MV Asymm
Bus 102	400	6300	100	70.280
Bus 2202A	400	6300	100	70.280
Bus 2202B	400	6300	100	33.028
Bus 2282A	400	3200	100	70.280
Bus 2282B	400	3200	100	70.280

Halaman 20939-20945 Volume 7 Nomor 3 Tahun 2023

ISSN: 2614-6754 (print) ISSN: 2614-3097(online)

Analisis:

Dari hasil perhitungan yang dilakukan didapatkan arus hubung singkat 3 fasa pada Bus 400 V di utilitas 1A sesuai tabel diatas.Nilai hubung singkat masih lebih rendah dari kapasitas bracing busbar yaitu 100 kA.

Daya hubung singkat di bus 400 V tertinggi pada Bus 102 yaitu :

MVAhs = $\sqrt{3}$ x kVdasar x lhs

 $= \sqrt{3} \times 0.4 \times 90.077$

= 68.642 MVA

SIMPULAN

Dari hasil analisis hubung singkat 3 fasa dan fasa dengan menggunakan software ETAP versi 12.6 di PT. Petrokimia gresik, maka penulis dapat mengambil beberapa kesimpulan sebagai berikut :

Dari hasil analisis gangguan hubung singkat 3 fasa, menunjukkan bahwa kapasitas bracing busbar Switchgear 6 kV di SS 2 (40 kA) masih di atas dari besarnya arus hubung singkat yang terjadi (18.66 kA). Sedangkan daya hubung singkat MVAhs dari hasil perhitungan sebesar (193.92 MVAhs), hasil ini masih di bawah kapasitas MVA symmetris (1286.084 MVAsymm). Hasil analisis gangguan hubung singkat 3 fasa d, menunjukkan bahwa kapasitas bracing busbar Switchgear 6 kV SS 3 (40 kA) masih di atas dari besarnya arus hubung singkat yang terjadi (13.990 kA). Sedangkan daya hubung singkat MVAhs dari hasil perhitungan sebesar (145.388 MVAhs), hasil ini masih di bawah kapasitas MVA symmetris (1286.084 MVAsymm). Hasil analisis gangguan hubung singkat 3 fasa d, menunjukkan bahwa kapasitas bracing busbar Switchgear 400 V (100 kA) masih di atas dari besarnya arus hubung singkat yang terjadi (90.077 kA). Sedangkan daya hubung singkat MVAhs dari hasil perhitungan sebesar (68.642 MVAhs), hasil ini masih di bawah kapasitas MVA symmetris (70.28 MVAsymm). Potensi ganguan arus hubungan singkat sangat berbahaya karana daya hubung singkat yang dihasilkan cukup besar, hal ini sangat berpotensi merusak perlatan yang ada. Oleh karena itu sangat penting diperhatikan penentuan relay proteksinya.Penelitian ini dapat digunakan sebagai salah satu referensi untuk penentuan setting proteksi fasa to fasa dan fasa ke tanah.

DAFTAR PUSTAKA

Handout Presentation PT. Petrokimia Gresik

- Yulianto, P.A. 2019. Analisa Koordinasi Proteksi Dengan Mempertimbangkan *Arc Flash* pada Sistem Kelistrikan di PT Petrokimia Gresik, Malang. Universitas Muhammadiyah Malang.
- Arifin, F.F., Priyadi, A., Putra, U.F.D. 2018. Evaluasi *Setting* Waktu Rele Pengaman di PT. Petrokimia Gresik dengan Mempertimbangkan *Transient Stability Assessment. SinarFe7*, 1(1): 65-73.
- Syahputra, E., Pelawi, Z., Hasibuan, A. 2018. Analisis Stabilitas Sistem Tenaga Listrik Menggunakan Berbasis Matlab. *Jurnal Sistem Informasi*, 2(2).
- Tleis, N. (2008). *Power Systems Modelling and Fault Analysis*, 10.1016/B978-0-7506-8074-5.X5001-2.
- Dewangga, Y. 2015. Proteksi Adaptif Untuk Koordinasi Optimal Digital Rele Arus Lebih Menggunakan Firefly Algorithm pada Sistem Distribusi Radial Dengan Pembangkit Tersebar. Surabaya. Institut Teknologi Sepuluh Nopember.
- Sa'adah, K.S. 2017. Studi Koordinasi Proteksi Pabrik Amurea II PT. Petrokimia Gresik, Surabaya, Institut Teknologi Sepuluh Nopember.
- Preve, C. 2006. *Protection of Electrical Network*, ISTE, Ltd. London. Great Britain and The United State.
- Putra, E.P. 2017. Studi Koordinasi Proteksi Arus Lebih di PT. Smelting Company Gresik. Surabaya. Institut Teknologi Sepuluh Nopember.

Halaman 20939-20945 Volume 7 Nomor 3 Tahun 2023

ISSN: 2614-6754 (print) ISSN: 2614-3097(online)

- Murtopo, A.S. 2015. Analisis Kestabilan Transien dan Koordinasi Proteksi pada PT. Kaltim Methanol Industri Akibat Integrasi dengan Sistem 11 kV PT. Kaltim Daya Mandiri. Surabaya. Institut Teknologi Sepuluh Nopember.
- Subekti, L., Suyoto. 2013. Pengaruh Faktor Daya terhadap Hasil Transformasi pada Trafo Arus CITEE 2013 ISSN: 2085-6350. Yogyakarta. Sekolah Vokasi UGM.
- Naodovic, B. 2005. *Influence of Instrument Transformers on Power System Protection*. Texas. *Thesis* Texas A & M University.
- Anderson, M.P. 1998. Power System Protection. Canada. John Willey & Sons, Inc.
- IEEE Std 242-2001[™]. 2001. *IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Syste.* New York. The Instute of Electrical and Electronics Engineer, Inc.

IEEE Std 551-2006, 2006, *IEEE Recommended Practice for Calculating Short-Circuit Currents in Industrial and Commercial Power System.* New York. The Instute of Electrical and Electronics Engineer, Inc.