Optimasi Konsentrasi Hidrogen Peroksida (H2O2) Metode Wet Peroxide Oxidation untuk Identifikasi Mikroplastik Polyethylene Terephthalate (PET)

Authors

  • Elinda Eka Putri Program Studi Kimia, Universitas Negeri Padang, Indonesia
  • Indang Dewata Program Studi Kimia, Universitas Negeri Padang, Indonesia

DOI:

https://doi.org/10.31004/jptam.v7i3.10535

Keywords:

Hidrogen Peroksida, WPO, Mikroplastik, Polietilen Tereftalat

Abstract

Mikroplastik didefenisikan sebagai partikel plastik berukuran kurang dari 5 mm. Mikroplastik terbentuk dari degradasi plastik yang lebih besar dan plastik yang sengaja dibuat berukuran kecil oleh industri plastik. Jenis polimer Polyethylene Terephthalate (PET) merupakan polimer yang paling umum ditemukan di lingkungan perairan karena penggunaanya yang luas dan memiliki sifat-sifat khusus. Penelitian ini bertujuan untuk meningkatkan efisiensi metode WPO untuk mikroplastik PET dengan memvariasikan konsentrasi H2O2 (20%, 25%, 30%, 35%, dan 40%). Mikroplastik diidentifikasi menggunakan instrument Fourier Transform Infra Red (FTIR) dan X-Ray Fluorescence (XRF). Pada hasil penelitian diperoleh kondisi optimum pada konsentrasi H2O2 35% dengan massa mikroplastik 0,1594 gram. Hasil identifikasi menggunakan FTIR menunjukkan adanya puncak C=O ester, C-O ester dan C-H aromatik yang sesuai dengan spektrum referensi mikroplastik PET yang membuktikan proses WPO tidak merusak mikroplastik. Hasil identifikasi XRF menunjukkan bahwa unsur penyusun mikroplastik PET adalah Al, Si, P, Cl, K, Ca, Ti, Fe, Zn, dan Ag.

References

Ariza-Tarazona, M. C., Siligardi, C., Carreón-López, H. A., Valdéz-Cerda, J. E., Pozzi, P., Kaushik, G., Villarreal-Chiu, J. F., & Cedillo-González, E. I. (2023). Low environmental impact remediation of microplastics: Visible-light photocatalytic degradation of PET microplastics using bio-inspired C,N-TiO2/SiO2 photocatalysts. Marine Pollution Bulletin, 193(May).

Campanale, C., Massarelli, C., Savino, I., Locaputo, V., & Uricchio, V. F. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17(4).

Carbery, M., O’Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115(December 2017), 400–409.

Chatterjee, S., & Sharma, S. (2019). Microplastics in Our Oceans and. The Journal of Field Actions, 19, 54–61.

Crawford, C. B., & Quinn, B. (2017). Microplastic Pollutants. Elsevier.

Firdaus, M., Trihadiningrum, Y., & Lestari, P. (2020). Microplastic pollution in the sediment of Jagir Estuary, Surabaya City, Indonesia. Marine Pollution Bulletin, 150(September), 110790.

GESAMP. (2015). Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment. Reports and Studies.

Harsojuwono, B. A., & Arnata, I. W. (2015). Teknologi Polimer Industri Pertanian. In Teknologi Polimer.

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Ciencia, 347(6223), 768–771.

Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez C., V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., Royer, S. J., Hyrenbach, K. D., Jensen, B. A., & Lynch, J. M. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127(November 2017), 704–716.

Kurian, M. (2021). Advanced oxidation processes and nanomaterials -a review. Cleaner Engineering and Technology, 2(March), 100090.

Laksono, O. B., Suprijanto, J., & Ridlo, A. (2021). Kandungan Mikroplastik pada Sedimen di Perairan Bandengan Kabupaten Kendal. Journal of Marine Research, 10(2), 158–164.

Lastovina, T. A., & Budnyk, A. P. (2021). A review of methods for extraction, removal, and stimulated degradation of microplastics. Journal of Water Process Engineering, 43(May), 102209.

Liu, P., Zhan, X., Wu, X., Li, J., Wang, H., & Gao, S. (2020). Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. Chemosphere, 242.

Lusher, A., Hollman, P. A., & Mendoza-Hill, J. (2017). Microplastics in fisheries and Aquaculture. In Food and Agriculture Organization of The United Nations.

Masura, J., et al. 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48.

Nuelle, M. T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161–169.

Warni, K & Dewata, I. (2021). Penentuan Limbah Mikroplastik Polyethylene Terephthalate dengan Metode Glikolisis Dalam Air Laut di Kota Padang. Chemistry Journal of Universitas Negeri Padang, 10(1), 21-27

Welle, F. (2011). Twenty years of PET bottle to bottle recycling - An overview. Resources, Conservation and Recycling, 55(11), 865–875.

Westerhoff, P., Prapaipong, P., Shock, E., & Hillaireau, A. (2008). Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Research, 42(3), 551–556.

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution (Barking, Essex?: 1987), 178, 483–492.

Downloads

Published

07-11-2023

How to Cite

Eka Putri, E., & Dewata, I. (2023). Optimasi Konsentrasi Hidrogen Peroksida (H2O2) Metode Wet Peroxide Oxidation untuk Identifikasi Mikroplastik Polyethylene Terephthalate (PET). Jurnal Pendidikan Tambusai, 7(3), 24736–24743. https://doi.org/10.31004/jptam.v7i3.10535

Issue

Section

Articles of Research

Citation Check