Peran dan Kepercayaan terhadap Artificial Intellegence dalam Peningkatan Kinerja Dosen

Authors

  • Wanty Eka Jayanti Universitas Bina Sarana Informatika, Indonesia
  • Eva Meilinda Universitas Bina Sarana Informatika, Indonesia

DOI:

https://doi.org/10.31004/jptam.v8i1.13170

Keywords:

Kualitas Kerja, SDM, Human-AI, Colaboration

Abstract

Kecerdasan buatan (artificial intelligence atau AI) tengah mengubah lanskap dunia kerja. AI kini diterapkan untuk mengotomatisasi berbagai tugas dan membantu meningkatkan produktivitas serta efisiensi. Namun, tantangan baru muncul terkait aspek kepercayaan dan kualitas hasil kerja kolaborasi antara manusia dan mesin. Penelitian kualitatif ini bertujuan mengkaji persepsi pekerja akan kehadiran AI di tempat kerja mereka, khususnya dampaknya pada kepercayaan terhadap kualitas hasil kerja. Melalui wawancara mendalam dengan 12 pekerja yang telah berinteraksi dengan AI, ditemukan bahwa meski AI dinilai membantu tugas rutin, rasa tidak percaya masih muncul atas judgment AI pada tugas-tugas kompleks. Beberapa tantangan utama kolaborasi manusia dan AI antara lain transparansi algoritma AI yang rendah, keterbatasan komunikasi dua arah, serta pemahaman konteks yang terbatas oleh AI. Diperlukan redesain proses bisnis dan tugas yang lebih pas dengan kemampuan masing-masing pihak. Transparansi dan auditabilitas AI juga krusial agar manusia memahami dasar judgment yang dibuat AI. Dengan demikian diharapkan tercipta kolaborasi manusia-AI yang produktif dan berkualitas di era digital.

References

Alomary, A., & Woollard, J. (2015). HOW IS TECHNOLOGY ACCEPTED BY USERS? A REVIEW OF TECHNOLOGY ACCEPTANCE MODELS AND THEORIES.

Ansell, C., & Gash, A. (2018). Collaborative Platforms as a Governance Strategy. Journal of Public Administration Research and Theory, 28(1), 16–32. https://doi.org/10.1093/jopart/mux030

Cabrera, Á. A., Perer, A., & Hong, J. I. (2023). Improving Human-AI Collaboration With Descriptions of AI Behavior. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1), 1–21. https://doi.org/10.1145/3579612

Casini, L., Marchetti, N., Montanucci, A., Orrù, V., & Roccetti, M. (2023). A human–AI collaboration workflow for archaeological sites detection. Scientific Reports, 13(1), 8699. https://doi.org/10.1038/s41598-023-36015-5

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Fast, E., & Horvitz, E. (2017). Long-Term Trends in the Public Perception of Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). https://doi.org/10.1609/aaai.v31i1.10635

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019

Human-AI Learning Performance in Multi-Armed Bandits. (2019). 369–375. https://doi.org/10.1145/3306618.3314245

Ifinedo, P. (2016). Applying uses and gratifications theory and social influence processes to understand students’ pervasive adoption of social networking sites: Perspectives from the Americas. International Journal of Information Management, 36(2), 192–206. https://doi.org/10.1016/j.ijinfomgt.2015.11.007

Modeling Human Trust and Reliance in AI-Assisted Decision Making: A Markovian Approach. (2023). Proceedings of the ... AAAI Conference on Artificial Intelligence, 37(5), 6056–6064. https://doi.org/10.1609/aaai.v37i5.25748

Parker, S. K., Van Den Broeck, A., & Holman, D. (2017). Work Design Influences: A Synthesis of Multilevel Factors that Affect the Design of Jobs. Academy of Management Annals, 11(1), 267–308. https://doi.org/10.5465/annals.2014.0054

Slade, E. L., Williams, M. D., & Dwivedi, Y. K. (2013). Mobile payment adoption: Classification and review of the extant literature. The Marketing Review, 13(2), 167–190. https://doi.org/10.1362/146934713X13699019904687

Surendran, P. (2012). Technology Acceptance Model: A Survey of Literature. International Journal of Business and Social Research, 2(4), Article 4. https://doi.org/10.18533/ijbsr.v2i4.161

Volpone, S. D., & Avery, D. R. (2013). It’s self defense: How perceived discrimination promotes employee withdrawal. Journal of Occupational Health Psychology, 18(4), 430–448. https://doi.org/10.1037/a0034016

Downloads

Published

24-01-2024

How to Cite

Jayanti, W. E., & Meilinda, E. (2024). Peran dan Kepercayaan terhadap Artificial Intellegence dalam Peningkatan Kinerja Dosen . Jurnal Pendidikan Tambusai, 8(1), 5111–5117. https://doi.org/10.31004/jptam.v8i1.13170

Issue

Section

Articles of Research

Citation Check