Analisis Regresi untuk Memodelkan Berat Bayi Lahir Berdasarkan Data Ultrasonografi (Studi Kasus: Puskesmas Air Manjuto)
DOI:
https://doi.org/10.31004/jptam.v6i1.3229Keywords:
Analisis Regresi, Estimasi Berat Lahir Bayi, Biometri Janin, USGAbstract
Pemodelan untuk estimasi Berat Bayi Lahir (BBL) di setiap populasi memiliki perbedaan. Karena sebuah model yang telah ada tidak valid untuk digunakan ke semua populasi. Akurasi saat estimasi BBL penting dalam kehamilan, karena ukuran janin terlalu besar atau terlalu kecil (tidak normal) bisa menjadi salah satu faktor komplikasi obstetri. Sehingga, perlu adanya pengembangan dan pembaruan untuk mendapatkan validitas model yang sesuai dengan populasi tertentu. Adapun pengukuran yang digunakan berdasarkan pengukuran USG, karena mencakup berbagai dimensi linear maupun planar. Biometri janin dari sebagian penelitian di dunia terkait model estimasi BBL yang digunakan adalah Biparietal Diameter (BPD), Head Circumferencial (HC), Abdominal Circumferencial (AC), dan Femur Length (FL). Analisis regresi yang digunakan adalah regresi dengan lebih dari satu variable bebas (berganda), yaitu regresi linear berganda, polynomial, dan logaritmik. Berdasarkan model yang dihasilkan diperoleh model terpilih dari regresi polynomial dengan formula:
References
Astrianty, L. E., Muhimmah, I., Fitriyati, Y., & Fajriyah, R. (2019). Implementasi Model Regresi untuk Estimasi Berat Lahir Bayi Berdasarkan Pengukuran Ultrasonografi (USG). Seminar Nasional Informatika Medis (SNIMed) 2019, 45–51.
Benoit, K. (2011). Linear Regression Models with Logarithmic Transformations. https://kenbenoit.net/assets/courses/ME104/logmodels2.pdf
Bimo, S. (2010). Korelasi Pearson. http://www.statistikolahdata.com/2010/11/korelasi-pearson.html
Fajriyah, R. (2014). Microarray data analysis?: background correction and differentially expressed genes. Graz University of Technology.
Fajriyah, R. (2016). Introducing a Cross-Variance Concept and Its Application. Universitas Islam Indonesia.
Fajriyah, R., & Rosadi, D. (2017). Tscvh R package: Computational of the two samples test on microarray-sequencing data. Journal of Physics: Conference Series, 943. https://doi.org/10.1088/1742-6596/943/1/012042
Hammami, A., Mazer Zumaeta, A., Syngelaki, A., Akolekar, R., & Nicolaides, K. H. (2018). Ultrasonographic estimation of fetal weight: development of new model and assessment of performance of previous models. Ultrasound in Obstetrics and Gynecology, 52(1), 35–43. https://doi.org/10.1002/uog.19066
Hiwale, S., Misra, H., & Ulman, S. (2019). Fetal weight estimation by ultrasound: development of Indian population-based models. Ultrasonography, 38(1), 50–57. https://doi.org/10.14366/usg.18004
Kalantari, M., Negahdari, A., Roknsharifi, S., & Qorbani, M. (2013). A new formula for estimating fetal weight: The impression of biparietal diameter, abdominal circumference, mid-thigh soft tissue thickness and femoral length on birth weight. Iranian Journal of Reproductive Medicine, 11(11), 933–938.
Kumarasiri, S., Wanigasekara, R., Wahalawatta, L., Jayasinghe, L., Padeniya, T., & Dias, T. (2013). Accuracy of ultrasound estimated fetal weight formulae to predict actual birthweight after 34 weeks: prospective validation study. The Ceylon Medical Journal, 58(3), 116–121. https://doi.org/10.4038/cmj.v58i3.6104
Kurniawan, R., & Yuniarto, B. (2016). Analisis Regresi Dasar dan Penerapannya dengan R (Pertama). Kencana.
Mardeyanti, Djulaeha, E., & Fatimah. (2013). Ketepatan taksiran berat badan janin dibandingkan dengan berat badan bayi baru lahir. Kebidanan, 1(1), 12–17.
Mawengkang, M. (2013). Estimasi Berat Badan Lahir berdasarkan Pengukuran Diameter Biparietal , Lingkar Kepala , Panjang Femur dan Lingkar Perut Janin Maya Mawengkang. Majalah Obstetri & Ginekologi, 21(1), 16–19.
Nindrea, R. D. (2017). Perbedaan Taksiran Berat Badan Janin Menurut Perhitungan Formula Berat Badan Lahir Bayi. Jurnal Ipteks Terapan, 11(1), 36. https://doi.org/10.22216/jit.2017.v11i1.1389
Njoku, C., Emechebe, C., Odusolu, P., Abeshi, S., Chukwu, C., & Ekabua, J. (2014). Determination of Accuracy of Fetal Weight Using Ultrasound and Clinical Fetal Weight Estimations in Calabar South, South Nigeria. International Scholarly Research Notices, 2014, 1–6. https://doi.org/10.1155/2014/970973
Que, A. (n.d.). Mathematics of Polynomial Regression. 2013. Retrieved February 25, 2022, from http://polynomialregression.drque.net/math.html
Stirnemann, J., Villar, J., Salomon, L. J., Ohuma, E., Ruyan, P., Altman, D. G., Nosten, F., Craik, R., Munim, S., Cheikh Ismail, L., Barros, F. C., Lambert, A., Norris, S., Carvalho, M., Jaffer, Y. A., Noble, J. A., Bertino, E., Gravett, M. G., Purwar, M., … Waller, S. (2017). International estimated fetal weight standards of the INTERGROWTH-21st Project. Ultrasound in Obstetrics and Gynecology, 49(4), 478–486. https://doi.org/10.1002/uog.17347
Yanti, L., & Sutiningsih. (2016). Regresi linier kenaikan berat badan ibu selama hamil terhadap berat bayi lahir. Jurnal Ilmiah Kebidanan, 7(2), 10–19.
Yasin, H., & Ispriyansti, D. (2017). Klasifikasi Data Berat Bayi Lahir Menggunakan Weighted Probabilistic Neural Network (WPNN) (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang). Media Statistika, 10(1), 61. https://doi.org/10.14710/medstat.10.1.61-70
Yulianto, M. A. (2012). Analisa Model Regresi. https://digensia.wordpress.com/2012/05/07/analisa-model-regresi-seri-1/
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2022 Ledy Elsera Astrianty
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).