Pembentukan Tripel Pythagoras Menurut Rumus Euclid
DOI:
https://doi.org/10.31004/jptam.v6i1.8192Keywords:
Triple PythagorasAbstract
Triple Pythagoras adalah tiga bilangan asli yang memenuhi rumus teorema Pythagoras. Dengan kata lain, triple Pythagoras merupakan tiga bilangan yang tepat untuk menyatakan panjang sisi-sisi suatu segitiga siku-siku. Jadi, ketiga bilangan dalam triple Pythagoras menyatakan sisi miring, sisi depan, dan sisi apit pada segitiga siku-siku. Salah satu rumus untuk menemukan bilangan tripel Pythagoras adalah formula dari Euclid dimana a = 2mn, b = m2 - n2 dan c = m2 +n2 dengan m > n. Dari formula ini, kita akan menggunakan formula untuk sisi a saja yaitu a = 2mn. Sisi a disini bisa bilangan ganjil, bisa juga bilangan genap.
References
Abdur Rahman As’ari, M. T. (2017). Buku Guru Matematika. Jakarta: Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.
Darmawijoyo, S. A. (2012). SATU UNTUK 3: ragam prosedur tripel PYTHAGORAS. Palembang: Unit Perpustakaan PPs Universitas Sriwijaya.
Ii, B. A. B., & Matematika, A. H. (n.d.). Konsep Dasar Tentang Teorema Phythagoras. 11–38.
Lawson, F. (1988). Pengertian Segitiga. 11–17.
Pythagoras, D., & Pythagoras, M. D. (n.d.). Pembuktian Dalil Pythagoras. 1–54.
Roebyanto, Goenawan. 2014. Geometri, Pengukuran dan Statistik. Malang: Gunung Samudera.
Sari, P. W., Fuadiah, N. F., & Jayanti, J. (2019). Analisis Learning Obstacle Materi Segitiga Pada Siswa Smp Kelas Vii. Indiktika?: Jurnal Inovasi Pendidikan Matematika, 2(1), 21. https://doi.org/10.31851/indiktika.v2i1.3394
Sparks, J. C. (2013). The Pythagorean Theorem: Crown Jewel of Mathematics.
Veljan, D. (2000). The 2500-Year-Old Pythagorean Theorem. Mathematics Magazine, 73(4): 259–272
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2022 Wina JamaliaAuthors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).