Klasifikasi Kelayakan Pemberian Kredit Menggunakan Metode Decision Tree dengan Seleksi Fitur (Studi Kasus: PT. Adira Finance Cabang Kota Ternate)
DOI:
https://doi.org/10.31004/jptam.v7i3.9915Keywords:
Klasifikasi, Kelayakan Pemberian Kredit, Decision Tree, Seleksi Fitur, PT Adira Finance Cabang Kota TernateAbstract
References
Chen, W., Xiang, G., Liu, Y., & Wang, K. (2012). Credit risk Evaluation by hybrid data mining technique. Systems Engineering Procedia, 3, 194–200. https://doi.org/10.1016/j.sepro.2011.10.029
Hadianto, N., Novitasari, H. B., & Rahmawati, A. (2019). Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network. Jurnal Pilar Nusa Mandiri, 15(2), 163–170. https://doi.org/10.33480/pilar.v15i2.658
Kurniawan, Y. I. (2018). Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(4), 455. https://doi.org/10.25126/jtiik.201854803
Lubis, C. P. (2022). Perbandingan Metode Radial Basis Function dan Multilayer Perceptron Terhadap Resiko Kredit Sepeda Motor. INFOSYS (INFORMATION SYSTEM) JOURNAL, 7(1), 25. https://doi.org/10.22303/infosys.7.1.2022.25-33
Mandala, I. G. N. N., Nawangpalupi, C. B., & Praktikto, F. R. (2012). Assessing Credit Risk: An Application of Data Mining in a Rural Bank. Procedia Economics and Finance, 4, 406–412. https://doi.org/10.1016/s2212-5671(12)00355-3
Miftahusalam, A., Pratiwi, H., & Slamet, I. (2023). Perbandingan Metode Random Forest dan Naive Bayes pada Analisis Sentimen Review Aplikasi BCA Mobile. PROSIDING SEMINAR NASIONAL “PERAN TEKNOLOGI PENDIDIKAN MENUJU PEMBELAJARAN MASA DEPAN: TANTANGAN DAN PELUANG.”
Mohammad Abualigah, L., Al?diabat, M., Al Shinwan, M., Dhou, K., Alsalibi, B., Said Hanandeh, E., & Shehab, M. (2020). Hybrid Harmony Search Algorithm to Solve the Feature Selection for Data Mining Applications. In Recent Advances in Hybrid Metaheuristics for Data Clustering (pp. 19–37). Wiley. https://doi.org/10.1002/9781119551621.ch2
Moradi, S., & Mokhatab Rafiei, F. (2019). A dynamic credit risk assessment model with data mining techniques: evidence from Iranian banks. Financial Innovation, 5(1). https://doi.org/10.1186/s40854-019-0121-9
Nguyen, B. H., Xue, B., & Zhang, M. (2020). A survey on swarm intelligence approaches to feature selection in data mining. Swarm and Evolutionary Computation, 54. https://doi.org/10.1016/j.swevo.2020.100663
Pedregosa, F., & Varoquaux, G. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Piramuthu, S. (2004). Evaluating feature selection methods for learning in data mining applications. European Journal of Operational Research, 156(2), 483–494. https://doi.org/10.1016/S0377-2217(02)00911-6
Pritalia, G. L. (2022). Analisis Komparatif Algoritme Machine Learning pada Klasifikasi Kualitas Air Layak Minum. KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 2(1).
S. Brid, R. (2018). Decision Trees — A simple way to visualize a decision. Medium.Com. https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
Sugesti, A., & Abdul Mukid, M. (2019). Perbandingan Kinerja Mutual K-nearest Neighbor (Mknn) Dan K-nearest Neighbor (Knn) Dalam Analisis Klasifikasi Kelayakan Kredit. JURNAL GAUSSIAN, 8(3), 366–376. http://ejournal3.undip.ac.id/index.php/gaussian
Syukron, A., & Subekti, A. (2018). Penerapan Metode Random Over-Under Sampling dan Random Forest untuk Klasifikasi Penilaian Kredit. JURNAL INFORMATIKA, 5(2).
Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., & Saeed, J. (2020). A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. Journal of Applied Science and Technology Trends, 1(2), 56–70. https://doi.org/10.38094/jastt1224
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2023 Rosihan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).