Pengaruh Variasi Temperatur dan Waktu Proses Pirolisis Tatal Kayu Karet untuk Pembuatan Bio-Char, Bio-Oil dan Syngas sebagai Bahan Bakar
DOI:
https://doi.org/10.31004/jptam.v7i3.10495Keywords:
Biomassa, Pirolisis, Temperatur, Waktu, Konsumsi EnergiAbstract
References
Abnisa, F., & Daud, W. M. A. W. (2014). A Review On Co-Pyrolysis of Biomass: An Optional Technique to Obtain A High-Grade Pyrolysis Oil. Energy Conversion and Management, 87(1), 71–85.
Asmunandar, A., Goembira, F., Raharjo, S., & Yuliarningsih, R. (2023). Evaluasi Pengaruh Suhu dan Waktu Pirolisis Biochar Bambu Betung (Dendrocalamus asper). Jurnal Serambi Engineering, 8(1).
Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press.
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94.
BPS. (2021). Luas Tanaman Perkebunan Menurut Provinsi (Ribu Hektar), 2019-2021. Retrieved March 1, 2023, from https://www.bps.go.id/indicator/54/131/1/luas-tanaman-perkebunan-menurut-provinsi.html
Cahyono, R. Y. (2013). Pengaruh Temperatur dan Waktu Pirolisis Terhadap Kualitas Bio-Oil dari Limbah Padat Kelapa Sawit. Jurnal Teknik Kimia, 19(2), 1-8.
Chen, D., & Chen, Y. (2019). Biochar: a review. Journal of Biobased Materials and Bioenergy, 13(1), 1-15.
Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied
Diebold, J. P. (1999). A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils.
Diebold, J. P., & Bridgwater, A. V. (1997). Overview of fast pyrolysis of biomass for the production of liquid fuels. Developments in Thermochemical Biomass Conversion: Volume 1/Volume 2, 5-23.
E. K. Kuryani, “Pirolisis Sampah dengan Variasi Jenis Ranting dan Kantong Plastik HDPE,” Dep. Tek. Lingkung., p. 162, 2017.
Febriyanti, F., Fadila, N., Sanjaya, A. S., Bindar, Y., & Irawan, A. (2019). Pemanfaatan limbah tandan kosong kelapa sawit menjadi bio-char, bio-oil dan gas dengan metode pirolisis. Jurnal Chemurgy, 3(2), 12-17.
Goad, M. A., & Ali, R. (2017). Thermal and catalytic cracking of plastic wastes into hydrocarbon fuels. International Journal of Engineering and Information Systems, 1(5), 56-61.
Gupta, A., Verma, N., & Singh, D. (2019). Effect of pyrolysis temperature on the physicochemical properties of biochar derived from different feedstocks. Journal of Analytical and Applied Pyrolysis, 134, 238-246.
HAPSAR, F. I. (2017).OPTIMASI NILAI KALOR BIOCHAR LIMBAH TEMPURUNG KELAPA PADA PROSES PIROLISIS MELALUI VARIASI SUHU DAN WAKTU.(Doctoral dissertation, Universitas Gadjah Mada).
International Energy Agency (IEA). (2007). Energy Efficiency Indicators: Fundamentals on Statistics. Paris: IEA.
Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis- A Technological Review. Energies, 5(12), 4952–5001.
Kasim, F., Fitrah, A. N., & Hambali, E. (2015). Aplikasi asap cair pada lateks. Penelitian dan Aplikasi Sistem dan Teknik Industri, 9(1), 182839
Komarayati, S., & Efiyanti, L. (2018). Characteristics and potential utilization of liquid smoke made from trema, nani, merbau, matoa and malas woods. Jurnal Penelitian Hasil Hutan, 36(3), 219-238.
Komarayati, S., Setiawan, D., & Nurhayati, T. (1995). Analisis Kimia dan Destilasi Kering Kayu Karet. Jurnal Penelitian Hasil Hutan, 13(1), 1–8.
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: science, technology and implementation. Routledge.
Liu, L., Cao, Y., Qing, M., & Long, Y. (2021, May). Structural evolution of rubber-wood char under different pyrolysis conditions. In IOP Conference Series: Earth and Environmental Science (Vol. 770, No. 1, p. 012019). IOP Publishing.
Maulina, S., & Putri, F. S. (2017). Pengaruh suhu, waktu, dan kadar air bahan baku terhadap pirolisis serbuk pelepah kelapa sawit. Jurnal Teknik Kimia USU, 6(2), 35-40.
Murnawan, E. (2019). Karakteristik Bio-Oil Hasil Pirolisis Limbah Brem Dengan Variasi Temperatur. JTT (Jurnal Teknologi Terpadu), 7(1), 23-28.
Mohan, D., Pittman Jr, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & fuels, 20(3), 848-889.
Nofiyanto, A., Soebiyakto, G., & Suwandono, P. (2020). Studi Proses Pirolisis Berbahan Jerami Padi Terhadap Hasil Produksi Char Dan Tar Sebagai Bahan Bakar Alternatif. Proton, 11(1), 21-28.
Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., & Fudholi, A. (2021). Artikel Review: Parameter Operasional Pirolisis Biomassa. Agroteknika, 4(1), 53–67.
Olufemi, A. S., & Olagboye, S. (2017). Thermal conversion of waste plastics into fuel oil. Int. j. petrochem. sci. eng, 2(8), 252-257.
Parinduri, L., & Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. Journal of Electrical Technology, 5(2), 88–92.
Rafli, R., Fajri, H. B., Jamaludhin, A., Azizi, M., Riswanto, H., & Syamsiro, M. (2017). Penerapan teknologi pirolisis untuk konversi limbah plastik menjadi bahan bakar minyak di Kabupaten Bantul. Jurnal Mekanika dan Sistem Termal, 2(1), 1-5.
Ridhuan, K., Irawan, D., Zanaria, Y., & Firmansyah, F. (2019). Pengaruh Jenis Biomassa Pada Pembakaran Pirolisis Terhadap Karakteristik dan Efisiensi Bioarang - Asap Cair yang Dihasilkan. Media Mesin: Majalah Teknik Mesin, 20(1), 18–27.
Ristianingsih, Y., Ulfa, A., & Syafitri, R. K. S. (2015). Pengaruh Suhu dan Konsentrasi Perekat terhadap Karakteristik Briket Bioarang Berbahan Baku Tandan Kosong Kelapa Sawit dengan Proses Pirolisis. Konversi, 4(2), 45–51.
Saparudin, S., Syahrul, S., & Nurchayati, N. (2015). Pengaruh Variasi Temperatur Pirolisis Terhadap Kadar Hasil Dan Nilai Kalor Briket Campuran Sekam Padi-kotoran Ayam. Dinamika Teknik Mesin, 5(1).
Sasmita, A., Isnaini, I., & Almira, U. (2022). Pengaruh Penambahan Biochar Cangkang Sawit Dengan Variasi Suhu Pirolisis Terhadap Emisi Co2 dari Top Soil. Jurnal Tanah dan Sumberdaya Lahan, 9(2), 439-446
Shaaban, M., El-Naggar, A. H., & El-Sayed, S. A. (2018). Effect of pyrolysis temperature on the properties of biochar derived from agricultural residues. Journal of Analytical and Applied Pyrolysis, 134, 1-9.
Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2018, March). Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. In IOP Conference Series: Materials Science and Engineering (Vol. 334, p. 012001). IOP Publishing.
Sipahutar, R. H., Sucipto, T., & Iswanto, A. H. (2015). Sifat Fisis dan Mekanis Kayu Karet (Hevea Brasiliensis MUELL Arg) Bekas Sadapan dan Kayu Karet tanpa Sadapan. Peronema Forestry Science Journal, 4(1), 95–101.
Soares, J. M., da Silva, P. F., Puton, B. M. S., Brustolin, A. P., Cansian, R. L., Dallago, R. M., & Valduga, E. (2016). Antimicrobial and antioxidant activity of liquid smoke and its potential application to bacon. Innovative Food Science & Emerging Technologies, 38, 189-197.
Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon management, 1(2), 289-303.
Sukiran, M. A., Chin, C. M., & Bakar, N. K. (2009). Bio-oils from pyrolysis of oil palm empty fruit bunches. American Journal of Applied Sciences, 6(5), 869-875.
Uchimiya, M., Chang, S., Klasson, K. T., & Wartelle, L. H. (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1-3), 432-441.
Varma, A. K., Shankar, R., & Mondal, P. (2018). A review on pyrolysis of biomass and the impacts of operating conditions on product yield, quality, and upgradation. Recent advancements in biofuels and bioenergy utilization, 227-259.
Wang, Y., Zhang, P., Zhang, X., Yuan, X., & Han, L. (2019). Effects of pyrolysis temperature on the yield and properties of biochar derived from different crop straws. BioResources, 13(4), 8002-8016.
Xie, Q., Li, Y., Zhang, Y., & Wang, X. (2019). Pyrolysis of biomass waste for bio-oil and biochar production: A review. Waste Management, 95, 390-401.
Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136-146.
Zhao, X., Zhou, H., Sikarwar, V. S., Zhao, M., Park, A.-H. A., Fennell, P. S., … Fan, L.-S. (2017). Biomass-Based Chemical Looping Technologies: The Good, The Bad and The Future. Energy & Environmental Science, 10(9), 1885–1910.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2023 Siti Aninda Nurfaritsya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).