Matriks Skew-simetris dan Sifat-sifatnya
DOI:
https://doi.org/10.31004/jptam.v8i2.14865Keywords:
Matriks Skew-Simetris, Nilai Eigen, DeterminanAbstract
Matriks adalah susunan bilangan-bilangan berbentuk persegi panjang yang terdiri atas baris dan kolom, dimana bilangan-bilangan dalam susunan disebut entri. Nama sebuah matriks menggunakan huruf kapital. Berdasarkan ukurannya, matriks terbagi dua, yaitu matriks bujur sangkar dan matriks tak bujur sangkar. Matriks skew-simetris adalah matriks bujur sangkar yang elemen-elemen pada baris dan kolom yang sama bernilai berlawanan tanda . Tujuan dari penelitian ini untuk mengetahui bagaimana matriks Skew-simetris dan sifat-sifatnya. Konsep yang akan dibahas pada penelitian ini adalah bagaimana sifat-sifat matriks skew-simetris terkait dengan penjumlahan matriks dan perkalian skalar, menentukan nilai determinan dari matriks Skew-simetris, menentukan nilai eigen dari matriks Skew-simetris, matriks nonsingular dan matriks ortogonal yang terkait dengan matriks skew-simetris. Hasil dari penelitian ini menyimpulkan beberapa sifat-sifat dari matriks skew-simetris menunjukkan matriks skew-simetris dengan ukuran yang sama dikalikan dengan skalar sebarang serta dijumlahkan sesama matriks skew-simetris akan menghasilkan matriks skew-simetris serta menghasilkan determinan nol dan nilai eigen nol atau imajiner.
References
Andrilli, S., & Hecker, D. (2010). Elementary Linear Algebra, Fourth Edition. http://elsevier.com
Anton, H., & Rorres, C. (2013). Elementary Linear Algebra?: Applications Version 11th Edition (11 th). Wiley, John and john.
Aziz, A., & Abdusysyakin. (2006). Analisa Matematis Filsafat Al Qur’an ii.
Brown, J. Ward., & Churchill, R. V. (Ruel V. (2009). Complex variables and applications. McGraw-Hill Higher Education.
Cipta, H. (2020). Completion of Matrix Inversions Using Elementary Matrix Inverse Multiplication Method. International Journal Of Science. http://ijstm.inarah.co.id
De, R. J., Cruz, L. A., & Paras, A. T. (2022). Sums Of Orthogonal, Symmetric, And Skew-Symmetric Matrices . In Electronic Journal of Linear Algebra (Vol. 38).
DeFranza, J., & Gagliardi, Daniel. (2009). Introduction to linear algebra with applications. McGraw-Hill/Higher Education.
Ford, & William. (2015). Numerical Linear Algebra with Applications.
Ipek, A. (2023). On Eigenvalue, Singular Value And Norms Of A Real Skew-Symmetric Matrix. In Electronic Journal of Mathematical Analysis and Applications (Vol. 11, Issue 1). http://math-frac.org/Journals/EJMAA/
Jie Liew, K., & Thai Nguyen, V. (2020). Hill Cipher Key Generation Using Skew-symmetric Matrix. https://www.researchgate.net/publication/342159038
Lipschutz, Seymour., & Lipson, Marc. (2009). Schaum’s Outlines: Theory and Problem Linear Algebra (Fourth). McGraw-Hill .
Nering, E. D. (1970). Linear Algebra and Matrix Theory. second edition (J. Wiley & sons, Eds.; second).
Nisa Pratiwi, P., & Sylviani, S. (2023). Implementasi Matriks Skew-symmetric dalam Metode Kriptografi Affine-Hill Cipher. Mathematical Sciences and Applications Journal, 4, 2986–4180. https://doi.org/10.22437/msa.v4i1.28864
Nugroho, D., Budhiati Veronica, R., & Mashuri, D. (2017). Struktur Dan Sifat-Sifat K-Aljabar. http://journal.unnes.ac.id/sju/index.php/ujm
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Wirdatul Hasanah, Yusmet Rizal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).