Sintesis dan Karakterisasi Elektroda Superkapasitor Berbasis Karbon Akrif Limbah Tongkol Jagung

Authors

  • Zulhamida Zulhamida Program Studi Kimia, Universitas Negeri Padang , Indonesia
  • Ananda Putra Program Studi Kimia, Universitas Negeri Padang , Indonesia

Keywords:

Tongkol Jagung, Elektroda, Superkapasitor

Abstract

Penelitian ini bertujuan untuk mengetahui pengaruh jenis elektrolit yang digunakan terhadap nilai kapasitansi spesifik yang dihasilkan dari elektroda karbon aktif Tongkol jagung. Preparasi karbon aktif dilakukan dengan tahapan dehidrasi, karbonisasi dan aktivasi menggunakann ZnCl2 2M. Pencetakan pelet dilakukan menggunakan hidrolik press dengan tekanan 8 ton. Pelet elektroda yang dihasilkan direndam menggunakan 3 jenis variasi larutan elektrolit yaitu H2SO4 1M, KOH 1M, dan Na2SO4 1M selama 48 jam. Data FTIR menunjukan bahwa terdapatnya gugus fungsi O-H, C=C, C-O, S=O, dan S-O pada elektroda superkapasitor. Hasil uji DR-UV menujukan bahwa band gap dari elektroda karbon aktif adalah 3,28 eV. Pengukuran sifat elektrokimia yang dilakukan dengan metode voltametri siklik menghasilkan kapasitansi spesifik optimum sebesar 58,5 Fg-1 didapatkan pada variasi elektrolit H2SO4 1M.

References

Aminullah, Mw., Setiawan, H., Huda, A., Samaulah, H., Haryati, S., & Bustan, Md. (2019). Pengaruh Komposisi Material Semikonduktor Dalam Menurunkan Energi Band Gap Dan Terhadap Konversi Gelombang Mikro. In Agustus (Vol. 13, Issue 2). Https://Jurnaleeccis.Ub.Ac.Id/

Apriwandi, A., Taer, E., & Farma, R. (2021). Analysis Of Cyclic Voltammetry Dan Galvanostatic Charge Discharge Electrode Supercapacitor Based On Activated Carbon From Kepok Banana Leaf (Musa Balbisiana). Journal Of Aceh Physics Society, 10(4), 94–101. Https://Doi.Org/10.24815/Jacps.V10i4.19491

Awitdrus, A., Hanifa, Z., Agustino, A., Taer, E., & Farma, R. (2022). Perbandingan Larutan Elektrolit H2so4 Dan Koh Pada Kinerja Elektrokimia Bahan Elektroda Berbasis Karbon Aktif Sabut Kelapa Muda. Jurnal Litbang Industri, 12(1), 15. Https://Doi.Org/10.24960/Jli.V12i1.7206.15-20

Barzegar, F., Momodu, D. Y., Fashedemi, O. O., Bello, A., Dangbegnon, J. K., & Manyala, N. (2015). Investigation Of Different Aqueous Electrolytes On The Electrochemical Performance Of Activated Carbon-Based Supercapacitors. Rsc Advances, 5(130), 107482–107487. Https://Doi.Org/10.1039/C5ra21962k

Burke, A. (2007). R&D Considerations For The Performance And Application Of Electrochemical Capacitors. Electrochimica Acta, 53(3 Spec. Iss.), 1083–1091. Https://Doi.Org/10.1016/J.Electacta.2007.01.011

Forouzandeh, P., Kumaravel, V., & Pillai, S. C. (2020). Electrode Materials For Supercapacitors: A Review Of Recent Advances. In Catalysts (Vol. 10, Issue 9, Pp. 1–73). Mdpi. Https://Doi.Org/10.3390/Catal10090969

Gao, Q. (2013). Optimizing Carbon/Carbon Supercapacitors In Aqueous And Organic Electrolytes. Https://Theses.Hal.Science/Tel-00872080

Gultom, E. M., & Lubis, M. T. (2014). Aplikasi Karbon Aktif Dari Cangkang Kelapa Sawit Dengan Aktivator H 3 Po 4 Untuk Penyerapan Logam Berat Cd Dan Pb. Jurnal Teknik Kimia Usu, 3(1), 5.

Iman, N., Razak, A. R., & Nurhaeni, N. (2016). Sintesis Surfaktan Metil Ester Sulfonat (Mes) Dari Metil Laurat. Kovalen, 2(2), 54–66. Https://Doi.Org/10.22487/J24775398.2016.V2.I2.6726

Ismanto, A. E., Wang, S., Soetaredjo, F. E., & Ismadji, S. (2010). Preparation Of Capacitor’s Electrode From Cassava Peel Waste. Bioresource Technology, 101(10), 3534–3540. Https://Doi.Org/10.1016/J.Biortech.2009.12.123

Jumardin, J., Maddu, A., Santoso, K., & Isnaeni, I. (2021). Synthesis Of Carbon Dots (Cds) And Determination Of Optical Gap Energy With Tauc Plot Method. Jambura Physics Journal, 3(2), 73–86. Https://Doi.Org/10.34312/Jpj.V3i2.11235

Kalpana, D., Cho, S. H., Lee, S. B., Lee, Y. S., Misra, R., & Renganathan, N. G. (2009). Recycled Waste Paper-A New Source Of Raw Material For Electric Double-Layer Capacitors. Journal Of Power Sources, 190(2), 587–591. Https://Doi.Org/10.1016/J.Jpowsour.2009.01.058

Kang, X., Kang, Y., Hong, X., Sun, Z., Zhen, C., Hu, C., Liu, G., & Cheng, H. (2018). Improving The Photocatalytic Activity Of Graphitic Carbon Nitride By Thermal Treatment In A High-Pressure Hydrogen Atmosphere. Progress In Natural Science: Materials International, 28(2), 183–188. Https://Doi.Org/10.1016/J.Pnsc.2018.02.006

Kiriukhin, M. Y., & Collins, K. D. (2002). Dynamic Hydration Numbers For Biologically Important Ions. Biophysical Chemistry, 99(2), 155–168. Https://Doi.Org/10.1016/S0301-4622(02)00153-9

Maddu, A., Santoso, K., Fisika, J., Sains Dan Teknologi, F., Islam Negeri Alauddin Makassar, U., & Artikel, I. (2022). Karakteristik Sifat Optik Nanopartikel Karbon (Carbon Dots) Dengan Metode Uv-Vis Drs (Ultra Violet-Visible Diffuse Reflectance Spectroscopy). 9(1), 1–15. Https://Doi.Org/10.24252/Jft.V9i2.28815

Marlina, M., & Putra, A. (2019). Preparation And Characterization Of Activated Carbon From Waste Of Corn Cob (Zea Mays L). International Jaournal Of Scientific Research And Engineering Development, 2. Www.Ijsred.Com

Nayak, N., & Panda, C. R. (2010). Aluminium Extraction And Leaching Characteristics Of Talcher Thermal Power Station Fly Ash With Sulphuric Acid. Fuel, 89(1), 53–58. Https://Doi.Org/10.1016/J.Fuel.2009.07.019

Novitra, R., Aziz, H., & Taer, E. (2022a). Supercapactors Based On Active Carbon From Spent Arabica Coffee Ground Using Naoh Activators. Journal Of Aceh Physics Society, 11(1), 33–40. Https://Doi.Org/10.24815/Jacps.V11i1.22227

Nurliana, L., Kasman, F., & Ritonga, H. (2022). Sintesis Metil Ester Sulfonat Dari Minyak Mahoni (Swietenia Mahagoni Linn) Menggunakan Reagen Natrium Bisulfit. Sains: Jurnal Ilmu Kimia Dan Pendidikan Kimiasains: Jurnal Ilmu Kimia Dan Pendidikan Kimia, 11(1). Http://Ojs.Uho.Ac.Id/Index.Php/Jpkim

Nurul Huda, A., Lestari, I., & Hidayat, S. (2022). Pemanfaatan Karbon Aktif Dari Sekam Padi Sebagai Elektroda Superkapasitor. In Jurnal Ilmu Dan Inovasi Fisika) (Vol. 06, Issue 02).

Penelitian, B., Aek, K., Kehutanan, K., Aek, T., Ilmu, D., Hutan, H., Penelitian, P., & Hutan, H. (2019). Biji Nyamplung. 15(1), 17–24.

Rahmi, F., Muldarisnur, M., & Yetri, Y. (2021). Variasi Konsentrasi Elektrolit H2so4 Untuk Pembuatan Karbon Aktif Kulit Buah Kakao Sebagai Elektroda Superkapasitor Dengan Aktivator Zncl2. Jurnal Fisika Unand, 10(4), 467–472. Https://Doi.Org/10.25077/Jfu.10.4.467-472.2021

Ranti, D. S. (2018). Sintesis Karbon Aktif Terfungsionalisasi Dari Buah Palem Putri (Veitchia Merillii) Dengan Oksidator H2so4 Untuk Adsorpsi Cr(Vi). Vi, 1–60.

Sofia, D. R. (2018). Sintesis Karbon Aktif Terfungsionalisasi Dari Buah Palem Putri (Veitchia Merillii) Dengan Oksidator H2so4 Untuk Adsorpsi Cr(Vi).

Studi Teknik Kimia, P., & Teknik Politeknik Negeri Sriwijaya Palembang Jl Srijaya Negara Bukit Besar, F. (2020). Pembuatan Karbon Aktif Dari Arang Tongkol Jagung Dengan Variasi Konsentrasi Aktivator Natrium Karbonat (Na 2 Co 3 ) (Vol. 5, Issue 1).

Sukma, V. A., & Sanjaya, H. (2023). Efek Penambahan Diethanolamine Dan Suhu Kalsinasi Terhadap Energi Gap Lapisan Tipis Cusno3. Asian Journal Of Science, Technology, Engineering, And Art, 1(2), 281–294. Https://Doi.Org/10.58578/Ajstea.V1i2.2045

Syabila, M., & Khair, M. (2022). Penurunan Celah Pita Zno Dengan Impregnasinya Pada Karbon Aktif. 3(1), 2746–7538. Https://Doi.Org/10.31933/Ejpp.V3i1

Taer, E., Zulkifli, Z., Arif, E. N., & Taslim, R. (2016). Analisa Kapasitansi Spesifik Elektroda Karbon Superkapasitor Dari Kayu Karet Terhadap Laju Scan Berdasarkan Variasi Aktivasi Hno3. Spektra: Jurnal Fisika Dan Aplikasinya, 1(1), 35–40. Https://Doi.Org/10.21009/Spektra.011.06

Tumimomor, F., Maddu, A., Pari, G., Fisika, J., Universitas, F., Manado, N., Fisika, D., Bogor, P., Penelitian, P., Pengembangan, D., Kehutanan, K., Hasil, P., & Bogor, H. (2017). Pemanfaatan Karbon Aktif Dari Bambu Sebagai Elektroda Superkapasitor.

Wang, G., Zhang, L., & Zhang, J. (2012). A Review Of Electrode Materials For Electrochemical Supercapacitors. Chemical Society Reviews, 41(2), 797–828. Https://Doi.Org/10.1039/C1cs15060j

Yu, A., Chabot, V., & Zhang, J. (2017). Electrochemical Supercapacitors For Energy Storage And Delivery Fundamentals And Applications.

Yuda, I. W. W., Ibrahim, F. M. M., Masruroh, M., Ula, N. M., Valiana, V., & Tjahjanto, R. T. (2021). Elektroda Superkapasitor Berbahan Nanokomposit Mno2/Ac Dari Limbah Plastik Dengan Teknik Elektrodeposisi. Jurnal Integrasi Proses, 10(2), 77. Https://Doi.Org/10.36055/Jip.V10i2.12229

Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A Review Of Electrolyte Materials And Compositions For Electrochemical Supercapacitors Chemical Society Reviews A Review Of Electrolyte Materials And Compositions For Electrochemical Supercapacitors.

Zuleta, M., Björnbom, P., & Lundblad, A. (2005). Effects Of Pore Surface Oxidation On Electrochemical And Mass-Transport Properties Of Nanoporous Carbon. Journal Of The Electrochemical Society, 152(2), A270. Https://Doi.Org/10.1149/1.1843772

Downloads

Published

23-05-2024

How to Cite

Zulhamida, Z., & Putra, A. (2024). Sintesis dan Karakterisasi Elektroda Superkapasitor Berbasis Karbon Akrif Limbah Tongkol Jagung. Jurnal Pendidikan Tambusai, 8(2), 19505–19516. Retrieved from http://jptam.org/index.php/jptam/article/view/15249

Issue

Section

Articles of Research

Citation Check