Sintesis dan Karakterisasi Elektroda Superkapasitor Berbasis Karbon Aktif Limbah Kulit Nanas
Keywords:
Karbon Aktif, Superkapasitor, Elektrolit, Nilai KapasitansiAbstract
Karbon aktif dari kulit nanas telah dimanfaatkan sebagai bahan dasar elektroda superkapasitor. Pembuatan karbon aktif kulit nanas ini dikarbonisasi menggunakan furnace selama 1 jam pada suhu 350°C lalu diaktivasi dengan aktivator ZnCl2 2M dengan perendaman 48 jam. Pelet dicetak seperti koin lalu di aktivasi lagi meggunakan 3 elektrolit yaitu H2SO4 1M, KOH 1M dan Na2SO4 1M. Kapasitansi spesifik menggunakan elektroda karbon aktif kulit nanas dengan metode Cyclic Voltammetry (CV) yaitu pada elektrolit H2SO4 1M diperoleh nilai kapasitansi tertinggi sebesar 66,25 F/g-1. Karakterisasi elekroda karbon aktif optimum menggunakan UV-DRS didapatkan nilai band gap dari elektroda superkapasitor optimum yaitu 3,08 eV. Hasil karakterisasi FTIR menunjukkan bahwa elektroda karbon terdapat beberapa gugus fungsi utama yaitu H-O, C=C, S=O, dan S-O.
References
Abioye, A. M., & Ani, F. N. (2015). Recent Development In The Production Of Activated Carbon Electrodes From Agricultural Waste Biomass For Supercapacitors: A Review. In Renewable And Sustainable Energy Reviews (Vol. 52, Pp. 1282–1293). Elsevier Ltd. Https://Doi.Org/10.1016/J.Rser.2015.07.129
Aminullah, Mw., Setiawan, H., Huda, A., Samaulah, H., Haryati, S., & Bustan, Md. (2019). Pengaruh Komposisi Material Semikonduktor Dalam Menurunkan Energi Band Gap Dan Terhadap Konversi Gelombang Mikro. Jurnal Eeccis, 13(2), 65–70. Https://Jurnaleeccis.Ub.Ac.Id/
Awitdrus, A., Hanifa, Z., Agustino, A., Taer, E., & Farma, R. (2022). Perbandingan Larutan Elektrolit H2so4 Dan Koh Pada Kinerja Elektrokimia Bahan Elektroda Berbasis Karbon Aktif Sabut Kelapa Muda. Jurnal Litbang Industri, 12(1), 15. Https://Doi.Org/10.24960/Jli.V12i1.7206.15-20
Barzegar, F., Momodu, D. Y., Fashedemi, O. O., Bello, A., Dangbegnon, J. K., & Manyala, N. (2015). Investigation Of Different Aqueous Electrolytes On The Electrochemical Performance Of Activated Carbon-Based Supercapacitors. Rsc Advances, 5(130), 107482–107487. Https://Doi.Org/10.1039/C5ra21962k
Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable Energy Resources: Current Status, Future Prospects And Their Enabling Technology. Renewable And Sustainable Energy Reviews, 39, 748–764. Https://Doi.Org/10.1016/J.Rser.2014.07.113
Endo, M., Takeda, T., Kim, Y. J., Koshiba, K., & Ishii, K. (2001). High Power Electric Double Layer Capacitor ( Edlc ’ S ); From Operating Principle To Pore Size Control In Advanced Activated Carbons. Carbon Science, 1(3), 117–128.
Erabee, I. K., Ahsan, A., Zularisam, A. W., Idrus, S., Daud, N. N. N., Arunkumar, T., Sathyamurthy, R., & Al-Rawajfeh, A. E. (2017). A New Activated Carbon Prepared From Sago Palm Bark Through Physiochemical Activated Process With Zinc Chloride. Engineering Journal, 21(5), 1–14. Https://Doi.Org/10.4186/Ej.2017.21.5.1
Gultom, E. M., & Lubis, M. T. (2014). Aplikasi Arang Aktif Dari Cangkang Kelapa Sawit Dengan Aktivator H3po4 Untuk Penyerapan Logam Berat Cd(Ii) Dalam Pelarut Air. Jurnal Teknik Kimia Usu, 3(1), 5–10.
Habibah, M. D., Rohmawati, L., & Setyarsih, W. (2016). Variasi Holding Time Suhu Aktivasi Karbon Aktif Dari Tempurung Kluwak (Pangium Edule) Sebagai Elektroda Pada Superkapasitor. Jurnal Inovasi Fisika Indonesia (Ifi), 05(01), 19–22.
Iman, N., Razak, A. R., & Nurhaeni, N. (2016). Sintesis Surfaktan Metil Ester Sulfonat (Mes) Dari Metil Laurat. Kovalen, 2(2), 54–66. Https://Doi.Org/10.22487/J24775398.2016.V2.I2.6726
Ismanto, A. E., Wang, S., Soetaredjo, F. E., & Ismadji, S. (2010). Preparation Of Capacitor’s Electrode From Cassava Peel Waste. Bioresource Technology, 101(10), 3534–3540. Https://Doi.Org/10.1016/J.Biortech.2009.12.123
Kalpana, D., Cho, S. H., Lee, S. B., Lee, Y. S., Misra, R., & Renganathan, N. G. (2009). Recycled Waste Paper-A New Source Of Raw Material For Electric Double-Layer Capacitors. Journal Of Power Sources, 190(2), 587–591. Https://Doi.Org/10.1016/J.Jpowsour.2009.01.058
Kampouris, D. K., Ji, X., Randviir, E. P., & Banks, C. E. (2015). A New Approach For The Improved Interpretation Of Capacitance Measurements For Materials Utilised In Energy Storage. Rsc Advances, 5(17), 12782–12791. Https://Doi.Org/10.1039/C4ra17132b
Ranti, D. S. (2018). Sintesis Karbon Aktif Terfungsionalisasi Dari Buah Palem Putri (Veitchia Merillii) Dengan Oksidator H2so4 Untuk Adsorpsi Cr(Vi). Vi, 1–60.
Sukma, V. A., & Sanjaya, H. (2023). Efek Penambahan Diethanolamine Dan Suhu Kalsinasi Terhadap Energi Gap Lapisan Tipis Cusno3. Asian Journal Of Science, Technology, Engineering, And Art, 1(2), 281–294. Https://Doi.Org/10.58578/Ajstea.V1i2.2045
Taer, E., Apriwandi, A., Ningsih, Y. S., Taslim, R., & Agustino. (2019). Preparation Of Activated Carbon Electrode From Pineapple Crown Waste For Supercapacitor Application. International Journal Of Electrochemical Science, 14(3), 2462–2475. Https://Doi.Org/10.20964/2019.03.17
Taer, E., Syech, R., & Taslim, R. (2015). Analisa Siklis Voltametri Superkapasitor Menggunakan Elektroda Karbon Aktif Dari Kayu Karet Berdasarkan Variasi Aktivator Koh. Prosiding Seminar Nasional Fisika (E-Journal) Snf2015, Iv, 105–110.
Taer, E., Zulkifli, Z., Arif, E. N., & Taslim, R. (2016). Analisa Kapasitansi Spesifik Elektroda Karbon Superkapasitor Dari Kayu Karet Terhadap Laju Scan Berdasarkan Variasi Aktivasi Hno3. Spektra: Jurnal Fisika Dan Aplikasinya, 1(1), 35–40. Https://Doi.Org/10.21009/Spektra.011.06
Wang, Y., Qu, Q., Gao, S., Tang, G., Liu, K., He, S., & Huang, C. (2019). Biomass Derived Carbon As Binder-Free Electrode Materials For Supercapacitors. Carbon, 155, 706–726. Https://Doi.Org/10.1016/J.Carbon.2019.09.018
Zhang, Y., Ghaly, A. E., & Li, B. (2012). Physical Properties Of Corn Residues. American Journal Of Biochemistry And Biotechnology, 8(2), 44–53. Https://Doi.Org/10.3844/Ajbbsp.2012.44.53
Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., & Zhang, J. (2015). A Review Of Electrolyte Materials And Compositions For Electrochemical Supercapacitors. Chemical Society Reviews, 44(21), 7484–7539. Https://Doi.Org/10.1039/C5cs00303b
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Mifthahul Chairani, Ananda Putra
![Creative Commons License](http://i.creativecommons.org/l/by-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).