Analisis Sentimen Ulasan Pengguna Aplikasi Bibit Menggunakan Algoritma Naive Bayes dan K-Nearest Neighbors (KNN)
Keywords:
Analisis Sentimen, Aplikasi Bibit, Naïve Bayes, KNNAbstract
Perkembangan aplikasi investasi digital seperti Bibit menuntut pemahaman mendalam terhadap persepsi pengguna. Penelitian ini menganalisis sentimen ulasan pengguna aplikasi Bibit di Google Play Store menggunakan algoritma Naïve Bayes dan K-Nearest Neighbors (KNN). Sebanyak 2.586 ulasan dikumpulkan, kemudian diproses melalui pelabelan data, praproses teks, pemberian bobot menggunakan TF-IDF, dan klasifikasi dengan rasio data latih-uji 60:40, 70:30, 80:20, dan 90:10. Hasil penelitian menunjukkan bahwa sentimen positif mendominasi dengan persentase 74,2%, sedangkan sentimen negatif sebesar 25,8%. Naïve Bayes unggul dengan akurasi tertinggi 89,70% pada rasio 90:10, dengan presisi dan recall yang seimbang serta stabilitas yang lebih baik dibandingkan KNN yang mencapai akurasi tertinggi 88,84%, tetapi fluktuatif. Temuan ini merekomendasikan Naïve Bayes sebagai algoritma yang konsisten untuk analisis sentimen ulasan aplikasi investasi. Hasil penelitian ini dapat menjadi referensi berbasis data bagi calon investor dalam pengambilan keputusan.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Arafil Azmi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).