Analisis Citra Medis untuk Mendeteksi Diabetes Menggunakan Metode CNN(Convulutiona Neural Network)
Keywords:
Diabetes, Citra Medis, CNN (Convolutional Neural Network), Kecerdasan Buatan, Klasifikasi GambarAbstract
Pendeteksian dini terhadap penyakit diabetes menjadi kunci dalam meningkatkan kualitas hidup pasien dan mencegah komplikasi jangka panjang. Teknologi pengolahan citra medis berbasis kecerdasan buatan, khususnya metode Convolutional Neural Network (CNN), telah menunjukkan potensi besar dalam menganalisis dan mengklasifikasikan data visual dari tubuh manusia. Penelitian ini mengusulkan sebuah pendekatan otomatis untuk menganalisis citra medis, seperti gambar retina dan CT scan, guna mengidentifikasi indikasi diabetes. Dataset citra medis diolah melalui tahapan preprocessing, augmentasi, dan pelatihan menggunakan arsitektur CNN yang disesuaikan. Hasil eksperimen menunjukkan akurasi mencapai 94,2%, sensitivitas 91,7%, dan spesifisitas 95,5%.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Delia Anggraini, Maisyarah Maisyarah, Maya Sari Hasibuan, Sindi Pratika Siwi, Dafa Fahreza Putra, M. Khalil Gibran

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).