Analisis Performa Clustering: K-Means dan Similarity Matrix dalam Evaluasi Silhouette, DBI, CHI, dan Dunn Index
Keywords:
Clustering, K-Means, Similarity Matrix, Silhouette, DBI, CHI, Dunn IndexAbstract
Clustering merupakan teknik penting dalam data mining yang bertujuan untuk mengelompokkan data berdasarkan kemiripan antar objek. Penelitian ini membahas analisis performa dua pendekatan clustering, yaitu K-Means dan Similarity Matrix, dalam konteks evaluasi kualitas cluster. Pendekatan Similarity Matrix diterapkan menggunakan hierarchical clustering dengan metode complete-linkage, sedangkan K-Means menggunakan data fitur numerik secara langsung. Keduanya diuji pada beberapa dataset dan dievaluasi menggunakan metrik kuantitatif seperti Silhouette Score, Davies-Bouldin Index (DBI), Calinski-Harabasz Index (CHI), dan Dunn Index. Hasil eksperimen menunjukkan bahwa pendekatan K-Means cenderung unggul dalam pemisahan cluster (Silhouette dan CHI lebih tinggi), sedangkan pendekatan Similarity Matrix lebih baik dalam kepadatan dan keseragaman cluster (DBI dan Dunn Index lebih rendah). Temuan ini menegaskan pentingnya pemilihan metode clustering yang sesuai dengan karakteristik data dan tujuan analisis.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Bhima Fajar Ramadhan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).