Deteksi Anomali menggunakan Isolation Forest pada Permintaan Kebutuhan Farmasi Pasien di Rumah Sakit Mitra Sejati Medan
Keywords:
Deteksi Anomali, Isolation Forest, Data MiningAbstract
Rumah Sakit Mitra Sejati Medan menghadapi tantangan dalam mengelola volume permintaan farmasi yang tinggi, menyebabkan proses verifikasi manual menjadi tidak efisien dan berisiko. Penelitian ini bertujuan merancang dan mengimplementasikan sistem deteksi anomali untuk meningkatkan efektivitas pengelolaan permintaan. Metode yang digunakan adalah algoritma Isolation Forest dengan menerapkan metodologi Cross-Industry Standard Process for Data Mining. Data historis permintaan obat, barang medis habis pakai, dan alat kesehatan diolah menggunakan Python untuk melatih model secara kontekstual. Hasil penelitian menunjukkan dari 2.167.942 transaksi, model berhasil mengidentifikasi 13.503 (0,62%) permintaan sebagai anomali statistik. Sistem yang dikembangkan melalui aplikasi web ini terbukti berhasil menjadi alat bantu keputusan berbasis data untuk meningkatkan efisiensi operasional, akurasi stok, dan memberikan peringatan dini.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Farhan Novaldi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).