Pemodelan Harga Saham BSI dengan Metode Fuzzy Time Series Markov Chain
DOI:
https://doi.org/10.31004/jptam.v6i1.3187Keywords:
Harga Saham, Lembaga Keuangan, Model Fuzzy Time Series Markov Chain, Tingkat Akurasi MAPEAbstract
Saham adalah salah satu instrumen lembaga keuangan yang paling populer. Salah satu pilihan perusahaan ketika memutuskan untuk pendanaan perusahaan adalah menerbitkan saham. Harga saham yang mengalami fluktuasi baik berupa kenaikan maupun penurunan membuat para investor membutuhkan suatu pemodelan untuk melihat pergerakan harga saham. Dengan adanya indikasi lonjakan atau turunan harga saham, perlu adanya pembentukan model dalam memprediksi harga saham BSI. Fluktuasi harga saham BSI dapat dimodelkan dengan model runtun waktu, salah satunya adalah Fuzzy Time Series Markov Chain (FTSMC). Pada penelitian ini dimodelkan harga saham BSI dari periode 2 Januari 2020 sampai 19 November 2021 sebanyak 460 data. Berdasarkan tingkat akurasinya yaitu nilai MAPE, model FTSMC memberikan nilai akurasi < 10% sehingga dapat disimpulkan bahwa model ini dapat memodelkan harga saham BSI dengan baik.
References
Abdul A. (2010). Manajemen Investasi Syariah. Bandung: Alfabeta.
Aladag, S., Aladag, C. H., Mentes, T., dan Egrioglu, E. (2012). “A New Seasonal Fuzzy Time Series Method Based on The Multiplicative Neuron Model and Sarima”. Hacettepe Journal of Mathematics and Statistics. Vol. 41 (3), pp. 337-345.
Alyousifi, Yousif, Mahmod Othman, Rajalingam Sokkalingam, Ibrahima Faye, and Petronio C.L. Silva. (2020). "Predicting Daily Air Pollution Index Based on Fuzzy Time Series Markov Chain Model". Symmetry 12. No. 2: 293.
Bank BSI. (Tanpa Tahun). Harga Saham BSI. https://ir.bankbsi.co.id/, Diakses pada 19 Desember 2021.
Cheng, C., Chen, T., Teoh, H. J., dan Chiang, C. (2008). “Fuzzy Time-Series Based On Adaptive Expectation Model For TAIEX Forecasting”. Expert Systems with Applications. Vol. 34, pp. 1126-1132.
C. H. Cheng, G. W. Cheng and J. W. Wang. (2008). “Multi-Attribute Fuzzy Time Series Method Based On Fuzzy Clustering” Expert Systems with Applications. Vol. 34, No.2, pp.1235-1242.
Q. Song and B. S. Chissom. (1993). “Forecasting enrollments with fuzzy time series – Part I”. Fuzzy Sets and Systems. Vol. 54, No.1, pp.1-9.
Ramadani, K., dan Devianto,D. (2020). “The Forecasting Model of Bitcoin Price with Fuzzy Time Series Markov Chain and Chen Logical Method”. AIP Conference Proceedings. 2296: 020095.
Sturges, H.A. (1926). “The Choice Of A Class Interval”. Journal of the American Statistical Association. Vol. 21(153). pp. 65-66.
S. R. Singh. (2007). “A Simple Method Of Forecasting Based On Fuzzy Time Series”. Applied Mathematics and Computation. Vol.186. No.1, pp.330-339.
S. T. Li and Y. C. Cheng. (2007). “Deterministic Fuzzy Time Series Model For Forecasting Enrollments”. Computers and Mathematics with Applications. Vol.53. No.12, pp.1904-1920.
Tsaur, R.C. (2012). “A Fuzzy Time Series-Markov Chain Model With An Application To Forecast The Exchange Rate Beetween The Taiwan And US Dollar”. International Journal of Innovative Computing, Information, and Control. Vol. 8(7B). pp. 4931-4942.
Wei, W.W.S. (2006). Time Series Analysis: Univariate and Multivariate Methods. Boston: Pearson.
Zaenurrohman et al. (2021). J. Phys.: Conf. Ser. 1943 012128
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2022 Salman Wajdi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).