Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5
DOI:
https://doi.org/10.31004/jptam.v6i3.4825Keywords:
Pengolahan Citra Digital, Deteksi Jenis Kendaraan, YOLOV5Abstract
Negara Indonesia mempunyai kepadatan penduduk yang sangat padat, terutama dikota-kota besar yang dimana jalan selalu dipadati oleh berbagai jenis kendaran. Pada jam sibuk banyaknya kendaraan yang membuat kemacetan dijalan. Oleh karna itu dibutuhkan pembangunan pelebaran jalan untuk menampung kendaraan yang dipadati oleh berbagai jenis kendaraan yang melintas. Agar pembangunan pelebaran jalan yang tepat pada lokasi yang sering terjadinya kepadatan, maka dibutuhkan sistem pendeteksian jenis-jenis kendaraan yang melintas dijalan raya. Meningkatnya pada macam-macam penelitian tentang pengolahan citra digital diantaranya tentang pendeteksian objek, untuk klasifikasi deteksi jenis kendaraan dijalan raya. Pada penelitian ini penulis membuat sistem pendedeteksi objek memakai metode YOLOV5 untuk mendeteksi jenis kendaraan dijalan raya. Penulis menggunakan dataset sebesar 1332 gambar dengan kelas bajaj, becak, bus, mobil, mobil molen, mobil pik’up, sepedah, sepeda motor, dan truk. Pada hasil penelitian menggunakan metode YOLOV5 yang dapat mengenali objek secara konsisten dengan tingkat akurasi yang cukup tinggi dan memiliki nilai akurasi 90%.
References
Al-Qudah, Rabiah, and Ching Y. Suen. 2019. “Enhancing Yolo Deep Networks for the Detection of License Plates in Complex Scenes.” ACM International Conference Proceeding Series.
Asmara, Rosa Andrie, Bimo Syahputro, Dodit Supriyanto, and Anik Nur Handayani. 2020. “Prediction of Traffic Density Using Yolo Object Detection and Implemented in Raspberry Pi 3b + and Intel Ncs 2.” 4th International Conference on Vocational Education and Training, ICOVET 2020: 391–95.
Benjelloun, Fadwa et al. 2020. “The Comparison between Two Methods of Object Detection: Fast Yolo Model and Delaunay Triangulation.” 2020 International Conference on Intelligent Systems and Computer Vision, ISCV 2020.
Caballo, Amie Rosarie, and Chris Jordan Aliac. 2020. “YOLO-Based Tricycle Detection from Traffic Video.” ACM International Conference Proceeding Series: 12–16.
Dasgupta, Madhuchhanda, Oishila Bandyopadhyay, and Sanjay Chatterji. 2019. “Automated Helmet Detection for Multiple Motorcycle Riders Using CNN.” 2019 IEEE Conference on Information and Communication Technology, CICT 2019: 1–4.
Ding, Caiwen et al. 2019. “REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAS.” FPGA 2019 - Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays: 33–42.
Espinosa, Jorge E., Sergio A. Velastin, and John W. Branch. 2021. “Detection of Motorcycles in Urban Traffic Using Video Analysis: A Review.” IEEE Transactions on Intelligent Transportation Systems 22(10): 6115–30.
Haryono, Asep, Sahid Bismantoko, Gilang Mantara Putra, and Tri Widodo. 2019. “Accuracy in Object Detection Based on Image Processing at the Implementation of Motorbike Parking on the Street.” Proceedings of the 2019 2nd International Conference on Applied Engineering, ICAE 2019: 0–4.
Hsu, Hao Hsuan, Nen Fu Huang, and Chuan Hsiang Han. 2020. “Collision Analysis to Motor Dashcam Videos with YOLO and Mask R-CNN for Auto Insurance.” Proceedings of International Conference on Intelligent Engineering and Management, ICIEM 2020: 311–15.
Ivaši?, Marina, and Miran Pobar. 2019. “Human Detection in Thermal Imaging Using YOLO.” : 20–24.
Jana, Arka Prava, Abhiraj Biswas, and Mohana. 2018. “YOLO Based Detection and Classification of Objects in Video Records.” 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2018 - Proceedings: 2448–52.
Ju, Moran, Haibo Luo, and Zhongbo Wang. 2020. “An Improved YOLO V3 for Small Vehicles Detection in Aerial Images.” ACM International Conference Proceeding Series.
Kavitha, R., and S. Nivetha. 2021. “Pothole and Object Detection for an Autonomous Vehicle Using YOLO.” Proceedings - 5th International Conference on Intelligent Computing and Control Systems, ICICCS 2021 (Iciccs): 1585–89.
Khan, Fahad A., Nitin Nagori, and Ameya Naik. 2020. “Helmet and Number Plate Detection of Motorcyclists Using Deep Learning and Advanced Machine Vision Techniques.” Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020: 714–17.
Li, Yongjun et al. 2020. “YOLO-ACN: Focusing on Small Target and Occluded Object Detection.” IEEE Access 8.
Lin, Hanhe, Jeremiah D. Deng, Deike Albers, and Felix Wilhelm Siebert. 2020. “Helmet Use Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning.” IEEE Access 8(3): 162073–84.
Ruifang, Zhang, Ji Tianyi, and Dong Feng. 2020. “Lightweight Face Detection Network Improved Based on YOLO Target Detection Algorithm.” ACM International Conference Proceeding Series: 415–20.
Tan, Shilei, Gonglin Lu, Ziqiang Jiang, and Li Huang. 2021. “Improved YOLOv5 Network Model and Application in Safety Helmet Detection.” ISR 2021 - 2021 IEEE International Conference on Intelligence and Safety for Robotics: 330–33.
Tao, Jianmin, Weiping Hu, and Jiabin Ouyang. 2019. “Research and Implementation of License Plate Location Based on Improved YOLO Algorithm.” ACM International Conference Proceeding Series.
Van, Lan-Da et al. 2021. “Things in the Air: Tagging Wearable IoT Information on Drone Videos.” Discover Internet of Things 1(1). https://doi.org/10.1007/s43926-021-00005-8.
Wang, Haoyue, Wei Wang, and Yao Liu. 2020. “X-YOLO: A Deep Learning Based Toolset with Multiple Optimization Strategies for Contraband Detection.” ACM International Conference Proceeding Series: 127–32.
Wei, Runchen, Ning He, and Ke Lu. 2020. “YOLO-Mini-Tiger: Amur Tiger Detection.” ICMR 2020 - Proceedings of the 2020 International Conference on Multimedia Retrieval: 517–24.
Xie, Tianhua et al. 2020. “FACE DETECTION in VR GAMES.” ACM International Conference Proceeding Series (2): 7–10.
You, Lei et al. 2019. “Small Traffic Sign Detection and Recognition in High-Resolution Images.” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11518 LNCS: 37–53.
Bin Zuraimi, Muhammad Azhad, and Fadhlan Hafizhelmi Kamaru Zaman. 2021. “Vehicle Detection and Tracking Using YOLO and DeepSORT.” ISCAIE 2021 - IEEE 11th Symposium on Computer Applications and Industrial Electronics: 23–29.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).