Metode Inferensi Bayesian untuk Model Konjugat-Eksponensial Menggunakan Algoritma Variasional Em: Dengan Akasus Data Survival Heterogen

Authors

  • Faadilah Rizkaini Magister Matematika, FMIPA Universitas Gadjah Mada, Indonesia, Indonesia
  • Abdurakhman Abdurakhman Magister Matematika, FMIPA Universitas Gadjah Mada, Indonesia, Indonesia

DOI:

https://doi.org/10.31004/jptam.v6i2.5075

Keywords:

Inferensi Bayesian, Algoritma Variational EM, Data Survival

Abstract

Metode inferensi Bayesian dengan algoritma VEM merupakan prosedur yang efisien untuk estimasi marginal dari model probabilistik dengan variabel laten atau data yang tidak lengkap. Algoritma VEM membangun dan mengoptimalkan batas bawah pada marginal menggunakan kalkulus variasional. Selanjutnya, distribusi campuran hingga didefinisikan sebagai model eksponensial konjugasi yang digunakan untuk menganalisis data kelangsungan hidup. Simulasi diperluas ke model eksponensial konjugasi yang ditawarkan berdasarkan pengukuran BIC dan AIC yang baik untuk mendapatkan model terbaik dari data kelangsungan hidup.

References

Attias, H. 2000. A variational Bayesian framework for graphical models. In Advances in Neural Information Processing Systems 12, MIT Press.

Beal , Matthew J. and Ghahramani, Zoubin. 2003. The Variational Bayesian EM Algorithm for Incomplete Data: with Application to Scoring Graphical Model Structures. Bayesian Statistics. Gatsby Computational Neuroscience Unit, UCL, UK. Oxford University Press. Vol.7, pp. 000-000.

Bishop, C. M. 1999. Variational PCA. In Proc. Ninth Int. Conf. on Arti_cial Neural Networks. ICANN.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. 1999. Probabilistic Networks and Expert Systems. Springer-Verlag, New York.

Ghahramani, Z. and Beal, M. J. 2000. Variational inference for Bayesian mixtures of factor analysers. In Advances in Neural Information Processing Systems 12, MIT Press.

Hinton, G. E. and van Camp, D. 1993. Keeping neural networks simple by minimizing the description length of the weights. In Sixth ACM Conference on Computational Learning Theory, Santa Cruz.

Lauritzen, S. L. and Spiegelhalter, D. J. 1988. Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Statist. Soc. B, Vol.50,pp. 154-227.

Liu, Chi. Et. all. 2019. Bayesian Estimation of Generalized Gamma Mixture Model Based on Variational EM Algorithm. Pattern Recognition, Elsevier. Vol.87, pp.269-284.

MacKay, D. J. C. 1997. Ensemble learning for hidden Markov models. Technical report, Cavendish Laboratory, University of Cambridge.

Neal, R. M. and Hinton, G. E. 1998. A view of the EM algorithm that justi_es incremental, sparse, and other variants. In Jordan, M. I., editor, Learning in Graphical Models, pp. 355-369. Kluwer.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA.

Waterhouse, S., MacKay, D. J. C., and Robinson, T. 1995. Bayesian methods for mixtures of experts. In Advances in Neural Information Processing Systems 7, MIT Press.

Downloads

Published

10-08-2022

How to Cite

Rizkaini, F. ., & Abdurakhman, A. (2022). Metode Inferensi Bayesian untuk Model Konjugat-Eksponensial Menggunakan Algoritma Variasional Em: Dengan Akasus Data Survival Heterogen. Jurnal Pendidikan Tambusai, 6(2), 16365–16372. https://doi.org/10.31004/jptam.v6i2.5075

Issue

Section

Articles of Research

Citation Check