Metode Inferensi Bayesian untuk Model Konjugat-Eksponensial Menggunakan Algoritma Variasional Em: Dengan Akasus Data Survival Heterogen
DOI:
https://doi.org/10.31004/jptam.v6i2.5075Keywords:
Inferensi Bayesian, Algoritma Variational EM, Data SurvivalAbstract
Metode inferensi Bayesian dengan algoritma VEM merupakan prosedur yang efisien untuk estimasi marginal dari model probabilistik dengan variabel laten atau data yang tidak lengkap. Algoritma VEM membangun dan mengoptimalkan batas bawah pada marginal menggunakan kalkulus variasional. Selanjutnya, distribusi campuran hingga didefinisikan sebagai model eksponensial konjugasi yang digunakan untuk menganalisis data kelangsungan hidup. Simulasi diperluas ke model eksponensial konjugasi yang ditawarkan berdasarkan pengukuran BIC dan AIC yang baik untuk mendapatkan model terbaik dari data kelangsungan hidup.
References
Attias, H. 2000. A variational Bayesian framework for graphical models. In Advances in Neural Information Processing Systems 12, MIT Press.
Beal , Matthew J. and Ghahramani, Zoubin. 2003. The Variational Bayesian EM Algorithm for Incomplete Data: with Application to Scoring Graphical Model Structures. Bayesian Statistics. Gatsby Computational Neuroscience Unit, UCL, UK. Oxford University Press. Vol.7, pp. 000-000.
Bishop, C. M. 1999. Variational PCA. In Proc. Ninth Int. Conf. on Arti_cial Neural Networks. ICANN.
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. 1999. Probabilistic Networks and Expert Systems. Springer-Verlag, New York.
Ghahramani, Z. and Beal, M. J. 2000. Variational inference for Bayesian mixtures of factor analysers. In Advances in Neural Information Processing Systems 12, MIT Press.
Hinton, G. E. and van Camp, D. 1993. Keeping neural networks simple by minimizing the description length of the weights. In Sixth ACM Conference on Computational Learning Theory, Santa Cruz.
Lauritzen, S. L. and Spiegelhalter, D. J. 1988. Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Statist. Soc. B, Vol.50,pp. 154-227.
Liu, Chi. Et. all. 2019. Bayesian Estimation of Generalized Gamma Mixture Model Based on Variational EM Algorithm. Pattern Recognition, Elsevier. Vol.87, pp.269-284.
MacKay, D. J. C. 1997. Ensemble learning for hidden Markov models. Technical report, Cavendish Laboratory, University of Cambridge.
Neal, R. M. and Hinton, G. E. 1998. A view of the EM algorithm that justi_es incremental, sparse, and other variants. In Jordan, M. I., editor, Learning in Graphical Models, pp. 355-369. Kluwer.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA.
Waterhouse, S., MacKay, D. J. C., and Robinson, T. 1995. Bayesian methods for mixtures of experts. In Advances in Neural Information Processing Systems 7, MIT Press.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2022 Faadilah RizkainiAuthors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).